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Abstract Fluid turbulence is commonly modeled by the Navier-Stokes equations with a
large Reynolds number. However, direct numerical simulations are not possible in practice,
so that turbulence modeling is introduced. We study artificial spectral viscosity models that
render the simulation of turbulence tractable. We show that the models are well posed and
have solutions that converge, in certain parameter limits, to solutions of the Navier-Stokes
equations. We also show, using the mathematical analyses, how effective choices for the pa-
rameters appearing in the models can be made. Finally, we consider temporal discretizations
of the models and investigate their stability.
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1 Introduction

Fluid turbulence in three dimensions is commonly modeled by the Navier-Stokes equations
(NSE) with a large Reynolds number. Currently, the simulation of the NSE in that regime is
a formidable task due to the need to resolve the small scale fluctuations or eddies that have
subtle effects on the large-scale dynamics of the fluid. To make this problem computation-
ally tractable, these effects must be modeled whereas the large-scale motions are simulated
nearly faithfully. In one approach, the velocity field is averaged over a small radius to derive
equations in terms of the averaged velocity. In this process, the problem of closure arises in
that the average of the nonlinear term in the NSE, which is called the Reynolds stress, must
be approximated and expressed solely in terms of averaged quantities. The way in which
this is done gives rise to a variety of models. The approach we consider, called the eddy-
viscosity method, treats the Reynolds stress as a viscous effect caused by the transport and
dissipation of energy due to the small-scale eddies. For this reason, this additional viscosity
is called the eddy-viscosity or turbulent viscosity. The turbulence model of Smagorinsky [23]
belongs to this type. For an overall survey on issues related to these models, see [12, 15].
Unfortunately, a straightforward application of this approach leads to the over-smearing of
the large-scale structures in the fluid. To remedy this unwanted effect, it has been proposed
that the eddy-viscosity be added only to the subgrid scales. In this way, one hopes to prevent
the large-scale structure from being smeared away. Here, we examine a particular class of
models of this type called spectral eddy-viscosity models in which the scales are defined in
terms of Fourier modes. The subgrid viscosity is simply realized as an addition of the artifi-
cial viscosity only to the high-frequency modes. A simple implementation of this approach
is to insert a high-pass spectral filter into the standard artificial viscosity.

We consider two types of eddy-viscosities: hyperviscosity and nonlinear viscosity. Hy-
perviscosity models are considered by various researchers [9, 18] because of the simplicity
of the idea. An example of the nonlinear viscosity is the Smagorinsky model mentioned be-
fore. A more general nonlinear viscosity model which includes the Smagorinsky model as a
special case is given by the modified NSE of Ladyzhenskaya [14].

The difficulty of turbulence manifests itself mathematically in the yet to be resolved
question of the well-posedness of NSE in three dimensions. Hyperviscosity and typical non-
linear viscosity models, on the other hand, can be shown to be well posed. However, these
models involve several parameters, e.g., eddy-viscosity coefficient, strength of the viscosity
operator, and the cut-off frequency that distinguishes the small scales from the large scales.
Thus, one would like to find some guiding principles for how these parameters should be
chosen.

A rigorous justification of a turbulence model is difficult, partly because one does not
have a good physical understanding of turbulence phenomena. However, given that the weak
solution of the NSE models turbulence accurately, in ideal settings in which one has infinite
computational power one can split the problem of turbulence modeling into two parts. The
first is to ensure that the turbulence model models the fluid well. This can be undertaken
by showing that the model is consistent with the NSE in some way. For instance, this was
undertaken in [9] in which it is proved that the solution to the hyperviscosity model, under
certain constraints on the parameters, converges to a suitable solution of the NSE that sat-
isfies the strongest partial regularity proved to date [2]. Another type of consistency result
is to assume that the solution of the NSE is smooth and then show that, in this regime, the
solution of the turbulence model is “close” to the solution of the NSE. Intuitively, the cut-off
filter plays an important role here, as it gives us a spectral convergence rate to the solution of
NSE, assuming that the solution is smooth. The second part is to ensure that the turbulence
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model is tractable for numerical simulations. This means that it should be well-posed, and if
so, the numerical method used to simulate it should be stable. A by-product of these investi-
gations is the insight gained into how various parameters introduced into the equation such
as the cut-off frequency, the strength of nonlinearity or hyperviscosity, affect consistency
and stability.

The plan of the paper is as follows. In Sect. 2, we introduce various notations and formal
definitions of the turbulence models we consider. In Sect. 3, the question of well posedness
is tackled. Section 4 investigates the consistency question. We estimate the degree by which
the nonlinear viscosity model is a perturbation of the NSE by estimating the error rate as
the perturbation goes to zero. From this analysis, we realize that certain parameters depend
on others and hence can be eliminated. In Sect. 5, we prove that for some specific values
of parameters, the hyperviscosity and nonlinear viscosity models have effectively finite-
dimensional dynamics in that any two solutions under the same forcing that agree in their
low-frequency part are exponentially contracted to a single path in phase space, i.e., the high-
frequency modes becomes irrelevant to the dynamics of the solutions. The hyperviscosity
model has already been shown [26] to possess such an exponential contraction property. It
is interesting that we can also estimate the dimension of such a finite-dimensional attractor
in terms of the model parameters. Temporal discretization of the nonlinear viscosity model
is considered in Sect. 6. We derive a uniform-in-time stability estimate for bounded power
input. This gives us some insight as to the reason why we should not choose too strong a
nonlinear viscosity.

2 Spectral Eddy-Viscosity Models

We introduce two spectral eddy-viscosity models and discuss various mathematical prob-
lems they inspire. In this work, we consider a three-dimensional domain that is periodic in
all directions, thus limiting ourselves to the investigation of isotropic turbulence.

2.1 The Navier-Stokes Equations

We begin with the Navier-Stokes equations (NSE)

∂tw − ν�w + w · ∇w + ∇q = f, ∇ · w = 0, (1)

where w denotes the velocity field, q the pressure, f the body force per unit mass, and, if the
equations have been non-dimensionalized, ν = Re−1 is the inverse of the Reynolds number.
There exist different notions with regards to what constitutes a solution of (1). A pair (w,q)

is referred to as a classical solution if it possesses one temporal and two spatial derivatives.
In the case of NSE, it is not known whether classical solutions exist for all time; however, it
is known that there is at most one classical solution. On the other hand, weak solutions, i.e.,
pairs (u,p) that satisfy

∫
〈∂tw,φ〉dt +

∫∫ (
ν∇w : ∇φ + w · ∇w · φ + q∇ · φ

)
dx dt =

∫∫
f φ dxdt

∫∫
(∇ · w)ψ = 0,



J Sci Comput (2010) 45: 294–332 297

for all test vector fields φ and test scalar functions ψ that are smooth and compactly sup-
ported in space and in time,1 are known to exist but it is not known if they are unique for all
time. The velocity w is now only required to have just one weak spatial derivative whereas
the time derivative is allowed to be even more irregular in that it can be a measure. The
specific solution spaces are introduced in Sect. 3; they basically fall out naturally from the a
priori analysis of the NSE.

2.2 Eddy-Viscosity Models

We briefly describe how a typical eddy-viscosity model is derived. The large-scale structure
of the velocity field can be extracted by filtering out small fluctuations as in

ul(x) = gδ ∗ w =
∫

gδ(x − y)w(y)dy

where gδ denotes a smooth function of compact support of radius δ > 0. If we average the
NSE using this function, we obtain

∂tul − ν�ul + ∇ · (ul ⊗ ul) + ∇ · (gδ ∗ (w ⊗ w) − ul ⊗ ul) + ∇πl = gδ ∗ f

∇ · ul = 0.
(2)

Note how the averaging process introduces the additional stress term

Rδ(w,w) = gδ ∗ (w ⊗ w) − ul ⊗ ul,

that is referred to as the Reynolds stress. Clearly, we cannot solve (2) for the average fields
(ul,πl) because gδ ∗ (w⊗w) contains interactions between the large-scale structures and the
small-scale eddies, where the latter is something we would like to avoid computing. Thus,
the problem of turbulence modeling is that of designing a closure of (2): we would like to
find an appropriate approximation Sδ(ul, ul) to Rδ(w,w) such that the computable solution
pair (u,π) satisfying

∂tu − ν�u + ∇ · (u ⊗ u) + ∇ · Sδ(u,u) + ∇π = f

∇ · u = 0

is a good approximation of the solution pair (ul,πl) of (2). Here, f represents the spatial
average of the original body force. We adopt this notation for simplicity since it does not
affect the arguments below.

The idea behind eddy-viscosity models is that the small eddies dissipate energy; there-
fore, their effect on the average velocity field can be modeled by a viscous dissipation term,
i.e.,

∇ · Sδ(u,u) = −∇ · (νT ∇u),

where νT is referred to as the eddy-viscosity. Ladyzhenskaya [14] proposed νT = |∇u|p−2

so that

∂tu − ν�u + u · ∇u − ∇ · (εδ(|∇u|p−2∇u)) + ∇π = f

∇ · u = 0;
(3)

1A : B denotes the componentwise inner product for the matrix A and B and 〈·, ·〉 denotes the duality cou-
pling.
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Smagorinsky [23] independently proposed the same model with p = 3, which has been
widely used. We will refer to (3) as the nonlinear viscosity model. The dependence of εδ

on δ should be determined appropriately by dimensional analysis by comparing with the
dimensions of the Reynolds stress. We will circumvent this issue for now and simply denote
this coefficient as ε.

Note that the eddy-viscosity term is modeled as a diffusion effect that is proportional in
strength to the velocity gradient. The degree of such a proportionality is quantified by the pa-
rameter p. The nonlinear diffusion operator introduced here is referred to as the p-Laplacian
and it is used extensively for modeling non-Newtonian fluid dynamics as well as in many
other areas. The mathematical properties of weak solutions of (3) was investigated by La-
dyzhenskays [14]. It is known that, for p ≥ 11

5 , a globally unique strong solution of (3) ex-
ists on a periodic domain [20]. Even though (3) is well-posed in this sense, the p-Laplacian
adds some difficulty. In particular, one is unable to talk about the solution in the classi-
cal sense unless one knows that the gradient of the velocity is continuous; to our knowl-
edge, such a result has not been proven. However, a local Hölder regularity for the equation
∂tu − ∇ · (|∇u|p−2∇u) = 0 is known [5]; the proof depends on maximum principle type ar-
guments. The extension of this result to (3) is obstructed by the fact that maximum principle
techniques, which are often the method of choice in proving regularity results, do not apply
because of the inherently global effect introduced by the incompressibility condition.

Another turbulence model that attains well-posedness is the hyperviscosity model ana-
lyzed by Lions [18]:

∂tu − ν�u + u · ∇u − ε(−�)αu + ∇π = f

∇ · u = 0.
(4)

The fractional differentiation operator is defined in the frequency domain by2
̂(−�)αu(k) =

|k|2αû(k), where û denotes the kth Fourier coefficient of u. One can consider this as a certain
type of eddy-viscosity model in which S(u,u) = |∇|2α−2∇u. The unique strong solution is
known to exist for α > 5/4 [18]. However, unlike for (3), it is known that the strong solution
of (4) is a classical solution.

The models (3) and (4) are designed to obtain well-posedness, a property that is lacking
for the three-dimensional NSE (1). Unfortunately, it is computationally observed that these
models tend to be over-diffusive, i.e., they smear large-scale structures too much.

2.3 Spectral Eddy-Viscosity Models

In order to preserve large-scale structures, we would like to limit the regularization effect
to the small-scales. In fact, this is the essential idea of the spectral viscosity method due to
Tadmor [4] for hyperbolic conservation laws, where artificial viscosity is added only at high
frequencies. Inspired by this idea, we could propose the following spectral viscosity model
for the NSE:3

∂tu − ν�u + u · ∇u − εQ∇ · (Q(∇u)) + ∇π = f (5)

where Q is a high-pass filter, i.e., it erases all the low-frequency modes of the input. There-
fore, damping is applied only to the high frequency part of the solution. An important point is

2In fact, it is illuminating to express this equation as an evolution equation in the frequency space.
3To avoid needless repetition, we sometimes omit the continuity equation ∇ · u = 0 which, of course, contin-
ues to hold.
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that for a smooth solution that can be expressed in terms of low modes, the spectral-viscosity
operator becomes zero. In fact, low-mode solutions to NSE do exist for appropriately chosen
forcing term f . This indicates how the filtered viscosity model tries to consistently model
the large-scale structures in the fluid.

In (5), the turbulent viscosity coefficient is constant; unfortunately, this does not make
the model well posed although this version of the spectral viscosity model was implemented
in [11] with some good effect. For this reason, we will combine the spectral viscosity and
eddy viscosity ideas. Basically, we modify the hyperviscosity and nonlinear viscosity mod-
els so that regularization only affects the high-frequency modes:

∂tu − ν�u + u · ∇u − ε(−�)αQu + ∇π = f (6)

and

∂tu − ν�u + u · ∇u − εQ∇ · (|∇Qu|p−2∇Qu) + ∇π = f, (7)

respectively. As it turns out, it is beneficial to stabilize (7) by a linear filtered viscosity as
well:

∂tu − ν�u + u · ∇u − εQ∇ · ((1 + |Q(∇u)|p−2)Q(∇u)) + ∇π = f. (8)

The model (8) is used for the computational simulation of turbulence in [10] in the set-
ting of a two-grid finite element method; the cut-off operator is defined by an appropriate
orthogonal projection onto the fine scales. Note that the spectral viscosity models inevitably
introduce several free parameters. These parameters are important in quantifying trade-offs
when modeling turbulence. Large nonlinear or hyperviscosity exponents and low cut-offs
give the model more stability at the expense of increasing modeling error, whereas small
nonlinear or hyperviscosity coefficients and high cut-off increase consistency at the expense
of decreased stability.

In this paper, we analyze (6) and (8) and mathematically investigate such trade-offs. It is
also worth noting that the model (6) is natural in our periodic setting because the equation
can be formulated in frequency space. This makes the analysis of (6) somewhat simpler
than that for (8) for which it is difficult to interpret the spectral nonlinear viscosity either in
frequency or physical space.

2.4 Formal Definitions

We now formalize the models (6) and (8). Let T

3 denote the unit box [0,1]3 with identifi-
cation of the planes xi = 0 with xi = 1, i = 1,2,3, and let I = [0, T ]. Then, QT = I × T

3

denotes the time-space cylinder over a periodic domain. We define the projection operator

PM(f ) =
∑

|k|∞≤M

f̂ (k)eik·x, where f =
∑

f̂ (k)eik·x .

Let P denote the Leray projector, i.e., an orthogonal projector onto the space of divergence-
free vector fields. Define4 XM = PM(L2), VM = PPM((L2)3), and the filter QM = I − PM .

4We use standard Sobolev space notation for function spaces. However, for economy of notation, we usually

omit the spatial domain in the designation the spaces, e.g., we use L2 instead of L2(T3),W1,p instead of
W1,p(T3), etc.
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Then, the filtered nonlinear viscosity model is given by

∂tu − ν�u + u · ∇u − εQM∇ · ((1 + |QM(∇u)|p−2)QM(∇u)) + ∇π = f

∇ · u = 0.
(9)

Clearly, this model is determined by the three parameters M , p, and ε; we refer to this model
as NV(ε,p,M) or simply as NV .

The filtered hyperviscosity model is given by

∂tu − ν�u + u · ∇u − ε(−�)αQMu + ∇π = f

∇ · u = 0.
(10)

Clearly, this model is determined by the three parameters M , α, and ε; we refer to this model
as HV(ε,α,M) or simply as HV .5

Now, even though we can show that a classical solution exists for (10), this is not neces-
sarily so for (9). Therefore, (9) does not make sense as stated. Hence, we must introduce the
notion of weak solutions of NV and do so as well for HV .

We refer to u as a weak solution of NV(ε,p,M) if ∇ · u = 0 almost everywhere and, for
almost all time,6,7

∫ (
∂tu · φ + ν∇u : ∇φ + u · ∇u · φ + ε(1 + |∇ũ|p−2)∇ũ : ∇φ̃

)
dx

=
∫

f · φ dx (11)

for all φ ∈ (C∞(QT ))3 such that
∫

φ = 0 and ∇ · φ = 0. For notational convenience, we
have set ũ = QMu and u = PMu and refer to the former as the high-frequency part of u and
the latter as the low-frequency part of u and similarly for φ.

Similarly, u is called a weak solution of HV(ε,α,M) if ∇ ·u = 0 almost everywhere and,
for almost all time,

∫
∂tu · φ + ν∇u : ∇φ + u · ∇u · φ + ε|∇|αũ · |∇|αφ̃ dx =

∫
f · φ dx

for all φ ∈ (C∞(QT ))3 such that
∫

φ = 0 and ∇ · φ = 0, where |∇|α is defined through the
Fourier transform as

̂|∇|αu(k) = |k|αû(k).

Our objective is to solve these equations by approximating them by a finite-dimensional
system that solves a similar problem. To this end, we refer to uN as a solution of the problem

5The operator (−�)α is defined as a multiplier in the Fourier space: ̂(−�)α = |k|2α , where k is the wave
number. Note that this is basically a generalization of differential operators to the setting with fractional index.
One caveat is that such operators, unlike the Laplacian, are global (in the physical space) for fractional index,
hence presenting some additional subtlety in the analysis.
6Unless specifically noted, all integrals are over the domain T

3.
7We also need certain regularity on u which is evident from the weak formation so that the expressions make
sense. These regularity conditions will be stated explicitly in the proof below.
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NVN(ε,p,M) if uN ∈ L2((0, T ) : VN), ũN ∈ Lp((0, T ) : VN), ∂tuN ∈ Ls((0, T ) : VN) for
some s > 1, and, for all φ ∈ Lp((0, T ) : VN) and for almost all time,

∫ (
∂tuN · φ + ν∇uN : ∇φ + uN · ∇uN · φ + ε(1 + |∇ũN |p−2)∇ũN : ∇φ̃

)
dx

=
∫

f · φ dx. (12)

Similarly, we refer to uN as a solution of the problem HVN(ε,α,M) if for almost all time,
∫

∂tuN · φ + ν∇uN : ∇φ + uN · ∇uN · φ + ε|∇|αũN · |∇|αφ̃ dx =
∫

f · φ dx.

When convenient, we simply refer to NVN(ε,p,M) and HVN(ε,α,M) as NVN and HVN ,
respectively.

The needed formal definitions are now in place so that, in the next section, we discuss
important mathematical question about the well-posedness of our models.

3 Well-Posedness

In this section, we discuss well-posedness issues for the spectral viscosity models. In gen-
eral, the well-posedness of a given partial differential equation means that it possesses the
following properties:

• a solution to the equation exists in an appropriate (weak) sense;
• this solution is unique;
• the solution is regular in an appropriate sense; and
• the solution should depend continuously on the initial data.

The classic result in the direction of showing well-posedness for the Navier-Stokes equations
(1) is the following result of Leray [16] (see also [3, 25]) on the existence of weak solutions.

Theorem 3.1 Let f ∈ L2(QT ), u0 ∈ H 1, and ∇ ·u0 = 0. Then, there exists a (weak) solution
u ∈ L2(I ;H 1) ∩ L∞(I ;L2) and ∂tu ∈ L

4
3 (I ;H−1) such that ∇ · u = 0 almost everywhere

and, for all φ ∈ C∞(QT ) with ∇ · φ = 0 and
∫

φ dx = 0 and for almost all time,

∫
QT

∂tuφ + ν∇u : ∇φ + u · ∇u · φ dxdt =
∫

QT

f · φ dxdt.

It is currently not known if weak solutions are unique. The question of uniqueness is
intimately tied to the regularity question as there are a host of results that show that, if
a solution possesses a sufficient regularity, then it is unique. Examples of results in this
direction are found in, e.g., [21, 22].

3.1 Energy Dissipation Estimate

Note that one of the difficulties associated with proving well posedness for the Navier-
Stokes equations is its lack of sufficient globally controlled quantities. The extra dissipation
of spectral eddy-viscosity models adds another globally controlled quantity to those for the
Navier-Stokes equations so to enable a proof of global well-posedness.
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Suppose NV and HV possess smooth solutions. Then, if we test NV and HV by u, we
obtain the most important global differential inequality, referred to as the energy dissipation
estimate:

1

2
∂t‖u‖2 + ν‖∇u‖2 + ε(‖∇ũ‖2 + ‖∇ũ‖p

p) = (f,u)

for NV and

1

2
∂t‖u‖2 + ν‖∇u‖2 + ε‖|∇|αũ‖2 = (f,u)

for HV . This implies the energy inequality

‖u(t)‖2 + ν

∫ t

0
‖∇u‖2 + 2ε

∫ t

0
(‖∇ũ‖2 + ‖∇ũ‖p

p) ≤ ‖u(0)‖2 + C2
p

ν

∫ t

0
‖f ‖2 (13)

for NV(ε,p,M) and, for HV(ε,α,M),

‖u(t)‖2 + ν

∫ t

0
‖∇u‖2 + 2ε

∫ t

0
‖|∇|αũ‖2 ≤ ‖u(0)‖2 + C2

p

ν

∫ t

0
‖f ‖2, (14)

where Cp is a constant depending on p only. Note the additional control on the norms of ũ

added to the usual energy balance equation for the NSE.
Another important bound for both models as well as for the NSE is that, for uniformly

bounded forcing, the L2 norm of the solution remains bounded. This can be seen from the
inequality

∂t‖u‖2 + ν‖u‖2 ≤ C‖f ‖2

that follows from the energy dissipation estimate and the application of the Poincaré in-
equality to the viscosity term.

3.1.1 Why Is It Difficult to Show Well-Posedness for NSE?

In [24], Tao uses dimensional heuristics to indicate why the well-posedness problem for the
NSE is difficult to prove. Suppose we take the forcing f = 0 and that u has order N support
in the frequency domain so that, by the uncertainty principle, it has a physical support of or-
der N−1. Then, the energy dissipation estimate tells us that the global quantities

∫
Td |u|2 ∼

U 2N−d and
∫ T

0

∫
Td |∇u|2 ∼ T N2U 2N−d are controlled, where d denotes the space dimen-

sion. Due to the skew-symmetry of the nonlinear convection term, its effect on globally
conserved quantities is nil; however, it can have a local effect of order

∫ T

0

∫
�

u · ∇u · u ∼
T U 3NN−d . Now, let us assume that ‖u(0)‖ ∼ O(1); then, ‖u(t)‖2 ∼ U 2N−d ∼ O(1) so
U ∼ Nd/2. It follows that the dissipative effect is of order

∫ T

0

∫
Td ‖∇u‖2 ∼ T N2 whereas the

nonlinear convective effect is of order
∫ T

0

∫
�

u · ∇u · u ∼ T N1+d/2.
For d = 2, the linear term and the nonlinear term have the same dimension. Hence, we

say that the energy dissipation bound is critical for the two-dimensional NSE. For d = 3,
the nonlinearity dominates and hence, in three dimensions, we say that the energy bound
is supercritical. The difficulty with three-dimensional turbulence is that the global energy
bound is supercritical and does not provide enough control on the size of u to prevent local
instabilities due to the nonlinear convective term from happening.

Note that energy dissipation also says that T N2 ∼ O(1) or T ∼ N−2, which is the well-
known parabolic space-time scaling. This roughly means that the solution can have the N th



J Sci Comput (2010) 45: 294–332 303

mode staying large only for a time interval of length N−2. This implies that the nonlinear
convective term is of order T N1+d/2 ∼ Nd/2−1. The exponent of N is positive for d ≥ 3.
Hence, it allows the possibility that energy is cascaded to higher and higher frequencies,
only staying at any frequency over time of intervals of length N−2 and meanwhile increasing
the size of the nonlinear convective term. But sum of N−2 as N → ∞ is finite; therefore, the
solution can blow up in finite time due to ever increasing destabilizing effect of the nonlinear
convective term. However, in practice, no such blowup has been observed and hence proving
the well posedness of the NSE remains an important open problem.

Let us apply the heuristics of Tao to the NV and HV models that contain additional
dissipative terms. For the NV model, we have

∫ T

0

∫
Td |∇ũ|p ∼ T UpNpN−d ∼ T Nd(

p
2 −1)+p

which, in three dimensions, becomes critical at p = 11
5 . Upon actual analysis, this equation

is shown to possess a strong solution at this value of p.
For the HV model, we have

∫ T

0

∫
Td ||∇|αũ|2 ∼ T U 2N2αN−d ∼ T N2α which becomes

critical at α = 5
4 , a value beyond which the well-posedness can be established.

Note how simple dimensional analysis is a powerful tool for predicting the criticality of
the models, and therefore gives us foresight into the well-posedness question. In any case,
from the dimensional analysis, the NV and HV turbulence models can be thought of as
effecting sufficient control on the high-frequency modes so as to prohibit blow-up due to
cascading. However, due to filtering, the nonlinear convective term remains free to act on
the low-frequency part of the solution and hence we expect that the large-scale behavior
solutions to the models remain accurate.

3.1.2 A Simple Interpolation Result

Note that the energy balance equation roughly says that ‖u‖L∞((0,T ):L2) and ν1/2 ×
‖∇u‖L2((0,T ):L2) are of the same order. This implies that we should have a bound with respect
to spaces that are in between these spaces. This is the content of the following interpolation
lemma.

Lemma 3.2 If u is a smooth solution to NV or HV and 2 ≤ r ≤ 6, then

‖u‖
L

4r
3(r−2) ((0,T ):Lr )

� ‖u‖ 6−r
2r

L∞((0,T ):L2)
‖∇u‖

3(r−2)
2r

L2((0,T ):L2)
.

Proof Let s = 4r
3r−6 . Then,

∫ t

0
‖u‖s

r dt ≤
∫ t

0
‖u‖s 6−r

2r

2 ‖u‖s
3(r−2)

2r

6 dt � ‖u‖
2(6−r)
3(r−2)

L∞((0,T ):L2)
‖∇u‖2

L2((0,T ):L2)
,

where we have used the Hölder and Sobolev inequalities. �

Here and below, � means the left-hand-side of an expression is dominated by a constant
multiple of the right-hand-side with the constant independent of the function or parameter
under consideration. However, the value of the constant may change from place to place.

3.2 Existence of a Weak Solution for NV

For the HV model, the well posedness, i.e., the existence, uniqueness, and regularity, of a
weak solution and its convergence to a weak solution of the NSE have been established by
Guermond [9]. Thus, here, we focus on the NV model.
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In this section, we show that precisely beyond the index p ≥ 11
5 that was identified by the

heuristical dimensional analysis, the NV model possesses a strong solution. Subsequently,
we prove the global uniqueness of weak solutions of the NV model and its convergence to a
weak solution of NSE as ε → 0. To these ends, we proceed in a standard fashion by deriving
a series of a priori estimates. Besides the energy dissipation estimate (13), we must show
regularity in time and in space, beginning with regularity in time.

Lemma 3.3 Let 1
q

+ 1
p

= 1. If uN is a solution to NVN , then ∂tuN ∈ Lmin{4/3,q}(I ;W−1,q ).

Proof If φ ∈ VN , then

(∂tuN ,φ)

= (f + ν�uN − uN · ∇uN + εQM∇ · ((1 + |∇QMuN |p−2)∇QMuN),φ)

�
(‖f ‖−1 + ν‖∇uN‖ + ‖uN‖2

4

)‖∇φ‖2 + ε‖∇QMuN‖‖∇QMφ‖
+ ε‖∇QMuN‖p−1

p ‖∇QMφ‖p,

where we have used the (p,p)-estimate (A.6) for the operator QM = I − PM . After time
integration,

∫
I

(∂tuN ,φ)dt �
(‖f ‖L2(I ;H−1) + ν‖∇uN‖L2(I,L2)

)‖∇φ‖L∞(I ;L2)

+ ε‖∇QMuN‖L2(I ;L2)‖∇QMφ‖L∞(I ;L2)

+ ‖uN‖ 1
2
L∞(I ;L2)

‖uN‖ 3
2
L4/3(I ;H 1)

‖∇φ‖L4(I ;L2)

+ ε‖∇QMuN‖p−1
Lp(I ;Lp)‖∇φ‖Lp(I ;Lp).

This inequality implies that ∂tuN ∈ Lmin{4/3,q}(I ;W−1,q ). �

Now, in order to prove existence, we show that the Galerkin projection satisfies the a
spatial regularity result uniformly in N . The proof of this result is almost identical to one
given in [20], except that, for our case, we have a cut-off filter that needs to be handled in a
special way.

Lemma 3.4 Let uN denote the solution of NVN(ε,p,M), where p ≥ 11
5 . Let λ = 2(3−p)

3p−5 .
Then, if p < 3,

‖∇uN(t)‖2 � ‖∇uN(0)‖2 +
∫ t

0

(‖f ‖2

ν
+ εM2‖∇uN‖p

p

)
ds

+
(∫ t

0
ε− 2λ

3 ‖∇uN‖p
p ds

)1/(1−λ)

whereas, if p ≥ 3,

‖∇uN(t)‖2 � ‖∇uN(0)‖2 +
∫ t

0

(‖f ‖2

ν
+ ‖∇uN‖3

3

)
ds.

Moreover, we have uN ∈ Lp(I ;W 1,3p) ∩ L2(I ;H 2) ∩ L∞(I ;H 1).
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Proof We set φ = −�uN in (12) to obtain

1

2

d

dt
‖∇uN‖2 + ν‖�uN‖2 − b(uN,uN,�uN)

+ ε(∇ · (1 + |∇ũN |p−2)∇ũN ,�ũN) ≤ ν

4
‖�uN‖2 + 1

ν
‖f ‖2,

where b(u, v,w) ≡ (u · ∇v,w). By applying Green’s identity, we have b(uN,uN,−�uN) ≤
‖∇uN‖3

3. Let Ip(̃uN) = ∑
i,j,k

∫ |∇ũN |p−2(∂kj ũNi
)2 dx. The monotonicity formula (A.13)

yields

Ip(̃uN) ≤ (∇ · |∇ũN |p−2∇ũN ,�ũN).

Thus, we have

1

2

d

dt
‖∇uN‖2

2 + ν‖�uN‖2 + εIp(̃uN) + ε‖�ũN‖2 � 1

ν
‖f ‖2 + ‖∇uN‖3

3. (15)

The p ≥ 3 case basically follows from this inequality.
We must work a little bit harder for p < 3. Note that, by interpolation,

‖∇uN‖3 ≤ ‖∇uN‖
2(p−1)
3p−2

2 ‖∇uN‖
p

3p−2
3p ,

and

‖∇uN‖3 ≤ ‖∇uN‖
p−1

2
p ‖∇uN‖

3−p
2

3p .

Thus, given 0 < σ < 1, we have

‖∇uN‖3
3 ≤ ‖∇uN‖q1

2 ‖∇uN‖q2
p ‖∇uN‖q3

3p,

where q1 = 3σ
2(p−1)

3p−2 , q2 = 3(1 − σ)
p−1

2 , and q3 = 3(1 − σ)
3−p

2 + 3σ
p

3p−2 . Then,

‖∇uN‖3
3 ≤ ‖∇uN‖q1

2 ‖∇uN‖q2
p ‖∇uN‖q3

3p

� ‖∇uN‖q1
2 ‖∇uN‖q2

p (‖∇ũN‖3p + M
2
p ‖∇uN‖p)q3

� ‖∇uN‖q1
2 ‖∇uN‖q2

p (Ip(̃uN)
1
p + M

2
p ‖∇uN‖p)q3

�
(
ε

− q3
p ‖∇uN‖q1

2 ‖∇uN‖q2
p

) p
p−q3 + ε

2

(
Ip(̃uN)

1
p + M

2
p ‖∇uN‖p

)p
, (16)

where we have used the Bernstein inequality (A.7), Lemma A.14, and Young’s inequality. It
is now clear how σ must be chosen. First, we would like to set q2

p

p−q3
= p. We then obtain

1−σ = p(3p−5)

6(p−1)
and σ = (3−p)(3p−2)

6(p−1)
. Thus, q1 = 3−p, q2 = p(3p−5)

4 , and q3 = (3−p)3p

4 which

imply p

p−q3
= p

q2
= 4

3p−5 . Now, let λ = q1
2 · p

p−q3
= 2(3−p)

3p−5 so that q3
p

· p

p−q3
= 3(3−p)

3p−5 = 2λ
3 .

Now, we apply the above parameters to (16) and substitute into (15) to obtain

1

2

d

dt
‖∇uN‖2 + ν‖�uN‖2 + εIp(QMuN) + ε‖�(QMuN)‖2

� 1

ν
‖f ‖2 + ε− 2λ

3 ‖∇uN‖2λ
2 ‖∇uN‖p

p + ε

2
Ip(QMuN) + ε

2
M2‖∇uN‖p

p.
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Therefore, integrating in time yields

‖∇uN(t)‖2

≤ ‖∇uN(0)‖2 + C

∫ t

0

(
1

ν
‖f ‖2 + ε− 2λ

3 ‖∇uN‖2λ
2 ‖∇uN‖p

p + ε

2
M2‖∇uN‖p

p

)
ds. (17)

Let A = ∫ t

0 ( 1
ν
‖f ‖2 + 1

2εM2‖∇uN‖p
p)ds and B = ε− 2λ

3 ‖∇uN‖p
p . Letting g = ‖∇uN‖2, (17)

then has the form

g(t) − g(0) ≤ A +
∫ t

0
Bgλ ds.

Solving this inequality results in

g(t) ≤
(

(g(0) + A)1−λ + (1 − λ)

∫ t

0
B ds

) 1
1−λ

� g(0) + A +
(∫ t

0
B ds

) 1
1−λ

.

Applying this to (17) results in

‖∇uN(t)‖2 ≤ ‖∇uN(0)‖2 + C

∫ t

0

(‖f ‖2

ν
+ εM2‖∇uN‖p

p

)
ds

+ C

(∫ t

0
ε− 2λ

3 ‖∇uN‖p
pds

) 1
1−λ

ds.

This inequality implies that ∇uN ∈ L∞(I ;L2) if λ ≤ 1 which translates to p ≥ 11
5 . This

completes the proof of the lemma. �

From the energy dissipation estimate and the regularity of the time derivative, we have
that uN ∈ L∞(I ;L2)∩L2(I ;H 1) and ∂tuN ∈ Lmin{4/3,q}(I ;W−1,q ). We use the Aubin-Lions
compactness theorem to obtain an appropriate subsequence (which we still refer to as uN )
such that uN ⇀ u weakly in L2(I ;H 1) and ∇uN → ∇u strongly in L2(I ;L2). The regular-
ity results of Lemma 3.4 show that, in fact, uN ∈ Lp(I ;W 1,3p) ∩ L∞(I ;H 1) ∩ L2(I ;H 2)

uniformly in N , and therefore the same holds for u. In particular, the Aubin-Lions theorem
implies the strong convergence in L2(I ;W 1,q ) for q < min{6,3p} = 6.

Let ψj ∈ Xj then clearly the weak convergence and incompressibility condition yield

(∂tuN ,ψj ) → 〈∂tu,ψj 〉 and ν(∇uN,∇ψj) → ν〈∇u,∇ψj 〉.

Finally, since ∇uN ⇀ ∇u in L2(I ;L2) and uN → u strongly in L2(I ;L2), we have

(uN · ∇uN,ψj ) → 〈u · ∇u,ψj 〉.

Showing the convergence of the p-Laplacian part is slightly more challenging. If p < 6, then
note that due to (A.12),

∫
〈|∇ũN |p−2∇ũN − |∇ũ|p−2∇ũ,∇ψ̃j 〉

≤ (p − 2)‖∇ψ̃j‖p‖∇ (̃uN − ũ)‖p(‖∇ũ‖p + ‖∇ũN‖p)p−2.
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Due to the fact that p < 6, uN → u in L2(I ;W 1,p) strongly. The Jackson inequality (A.9)
tells us that QM is an (p,p) type operator. Therefore, ũN → ũ in L2(I ;W 1,p). Thus, we
have the required convergence.

For p ≥ 6, we consider a different approach. First, since ∇ũN → ∇ũ in L2(QT ), from
(A.15) there exists a subsequence Ni such that ∇ũNi

→ ∇ũ almost everywhere. Conse-
quently, due to (A.12), |∇ũNi

|p−2∇ũNi
→ |∇ũ|p−2∇ũ almost everywhere. Note then that

for any set M ⊂ QT , we have

∫
M

|∇ũNi
|p−2∇ũNi

: ∇ψjdxdt ≤ |M| 1
p

∫ T

0
‖∇ũNi

‖p−1
p ‖∇ψj‖∞.

Thus, the p-Laplacian term is uniformly integrable. Thus, the required convergence follows
from (A.16).

The following theorem summarizes the results obtained.

Theorem 3.5 Let u(0) ∈ H 1 and f ∈ L2. If p ≥ 11
5 , there exists a weak solution u to

NV(ε,p,M). In fact, u possesses the further regularity u ∈ Lp(I ;W 1,3p) ∩ L2(I ;H 2) ∩
L∞(I ;H 1).

3.3 Further Regularity

In this section, we show that, if u(0) ∈ W 1,p , then ∂tu ∈ L2(I ;L2) and u ∈ L∞(I ;Lp). With
this additional result, u satisfies a host of regularity results so that we may refer to such a
solution the strong solution of NV .

Theorem 3.6 Let p ≥ 11
5 , f ∈ L2, and u(0) ∈ W 1,p . With the same hypothesis as in the

previous section and suppose in addition that u(0) ∈ W 1,p . Then, weak solutions of NV
possess the further regularity ∂tu ∈ L2(I ;L2) and u ∈ L∞(I ;Lp).

Proof We let φ = ∂tu in (11) to obtain

∫
I

(
‖∂tu‖2 + ν

2
‖∇u‖2 + b(u,u, ∂tu) + ε〈(1 + |∇ũ|p−2)∇ũ, ∂t∇ũ〉

)
dt

≤
∫

I

(
1

4
‖∂tu‖2 + 4‖f ‖2

)
dt.

Using (A.12), we have

1

2

∫
I

‖∂tu‖2dt + ν‖∇u(t)‖2 + ε(‖∇ũ(t)‖2 + ‖∇ũ(t)‖p
p) � ν‖∇u(0)‖2

+ ε(‖∇ũ(0)‖2 + ‖∇ũ(0)‖p
p) +

∫
I

(∫
|u · ∇u|2dx + 4‖f ‖2

)
dt.

The Hölder inequality implies

∫
|u · ∇u|2 dx ≤ ‖u‖2

6p
3p−2

‖∇u‖2
3pdx � ‖∇u‖2

2‖∇u‖2
3p,
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where the last inequality is due to the Sobolev inequality and the fact that 6p

3p−2 ≤ 6. Thus,
we have

1

2

∫
I

‖∂tu‖2 dt + ν‖∇u(t)‖2 + ε(‖∇ũ(t)‖2 + ‖∇ũ(t)‖p
p)

� ν‖∇u(0)‖2 + εŨ(0) + ‖∇u‖2
L∞(I ;L2)

‖∇u‖2
L2(I ;L3p)

+ 4
∫

I

‖f ‖2 dt,

where U(0) ≡ ‖∇ũ(0)‖2 + ‖∇ũ(0)‖p
p . The right-hand side is bounded due to the regularity

result of the previous section. Therefore, the theorem follows. �

3.4 Uniqueness and Stability

In this section, we show that the solution of NV(ε,p,M) is unique. We do this by deriving
a stability estimate. Such an estimate also holds for sufficiently regular solutions of the
three-dimensional NSE. The key point is that for NV, the needed regularity is proved in the
previous section.

Theorem 3.7 Let u1 and u2 be two distinct solutions to NV(ε,p,M) with p ≥ 11
5 . Then, we

have

‖(u1 − u2)(t)‖2 ≤ ‖u1(0) − u2(0)‖2e
∫ t

0 min{ν−3‖∇u1‖4,εM2+ε−3‖∇u1‖4}ds .

Because u1 ∈ L∞(I ;H 1) for p ≥ 11
5 , the solution to NV(ε,p,M) is unique.

Proof Because, for i = 1,2,

∂tui − ν�ui − εPQM∇ · ((1 + |∇ũi |p−2)∇ũi) + P (ui · ∇ui) = f,

we have that w = u1 − u2 satisfies

∂tw − ν�w − εPQM∇ · ((1 + |∇ũ1|p−2)∇ũ1 − ((1 + |∇ũ2|p−2)∇ũ2)

+ P (u1 · ∇u1 − u2 · ∇u2) = 0.

We test this equation against w and use the monotonicity result (A.12) to obtain

1

2
∂t‖w‖2 + ν‖∇w‖2 + ε(‖∇w̃‖2 + γ ‖∇w̃‖p

p) ≤ −(w · ∇u1,w). (18)

Note that due to the Gagliardo-Nirenberg inequality, we have ‖w‖4 ≤ 4
3
√

3
‖w‖1/4‖∇w‖3/4

so that

(w · ∇u1,w) ≤ ‖∇u1‖‖∇w̃‖3/2‖w̃‖1/2 + ‖∇u1‖‖w‖2
4

≤ ε

12
‖∇w̃‖2 + cε−3‖∇u1‖4‖w̃‖2 + M(1/2−1/4)3·2‖∇u1‖‖w‖2

≤ ε

12
‖∇w̃‖2 + (M3/2‖∇u1‖ + ε−3‖∇u1‖4)‖w‖2, (19)

where we have used the Bernstein inequality (A.7). We also have that

(w · ∇u1,w) ≤ ‖∇u1‖‖∇w‖3/2‖w‖1/2 ≤ cν‖∇w‖2 + cν−3‖∇u1‖4‖w‖2. (20)

By applying (19) and (20) to (18) and using the Gronwall inequality, the result holds. �
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3.5 Convergence to a Weak Solution of the NSE

We have shown that the NV model is well-posed. This indicates, at least in part, that solving
the NV equation numerically is tractable. We must, however, also show that somehow NV
models turbulence well. To this end, we show that the solution to NV converges to a solution
of NSE. The first issue we must clarify, however, is that there are two senses in which the
sequence of solutions to NV can be possibly taken to converge to a NSE solution: one is to
take M → ∞ and the other ε → 0. In fact, we are also interested in cases in which both
of these occur at the same time. In light of the fact that we do not know much about the
regularity of weak solutions of the NSE, it is unlikely that as M → ∞ independent of ε,
the p-Laplacian term goes to zero. Therefore, the most sensible thing to do is to take the
sequence as ε → 0, and perhaps let M → ∞ as a function of ε. Thus, we will show that the
sequence uε parameterized by ε contains a subsequence that converges to a weak solution
of NSE, and let M depend on ε by expressing it as M(ε).

Note that uε ∈ L2(I ;H 1) ∩ L∞(I ;L2) and ∂tuε ∈ Lmin{4/3,q}(I ;W−1,q ) uniformly in ε

and therefore we can use the Aubin-Lions theorem to obtain the weak limit u. We want to
show that such a u is a weak solution of the NSE. Note that

(ε|∇QM(ε)u|p−2∇QM(ε)u,∇ψ) ≤ ε1/p(ε1/p‖∇QM(ε)u‖p)p−1‖∇ψ‖p.

We know that
∫

ε1/p‖∇QM(ε)u‖pdt is uniformly bounded in ε due to (13). Thus, we may
take ε → 0 and see that the nonlinear term goes to zero so that the limit of the solution to
NV(ε,p,M(ε)) as ε → 0 satisfies the weak formulation for NSE for any choice of M(ε).

Theorem 3.8 Let uε be the solution to NV(ε,p,M(ε)). Then, there exists u such that a
subsequence of uε converges weakly uεj

⇀ u in L2(I ;H 1) and uεj
→ u strongly in L2(L2)

as εj → 0 and u is a weak solution of the NSE.

In this section, we proved some preliminary results concerning the well-posedness of
the NV model. In Sect. 6, we investigate the NV model further by discretizing the equation
in time. We will derive a certain stability result that allows us to address the question of
choosing the appropriate parameters for the model.

4 Convergence Rate Estimate

In this section, we bound the norm of the difference between solutions of the three-
dimensional NSE and of NV(ε,p,M) in terms of the difference between the initial data
and the regularity of the solution to the NSE. As was discussed in Sect. 3, we examine the
error rate in terms of ε. There, we indicated that M is allowed to depend on ε and go to in-
finity when ε → 0. One question is to find whether there exists an optimal choice of M(ε).
The estimation of the convergence rate offers one possibility to choose M(ε), as we will
see that the optimization of the error estimate naturally shows us how M should depend on
certain inverse polynomials of ε. We also note the role played by the parameter p. Raising
p stabilizes the system; therefore, in the presence of sufficient regularity, we obtain a better
rate. On the other hand, higher p implies that NV is a significantly perturbed version of the
NSE, and therefore if the solution of the NSE does not have the required regularity, the rate
does not apply. We also prove that a uniform in time rate estimate is possible for p = 5

2 ,

although the rate in that case depends on the exponential power of ν− 5
2 . In this way, we have

indicated how M should depend on ε and how p should be chosen, effectively determining
the parameter choices.
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4.1 The Nonlinear Viscosity Case

4.1.1 An Estimate Uniform in the Viscosity

We first assume that p ≥ 5
2 . We would like to obtain an estimate that is completely indepen-

dent of ν. The price we have to pay is that we do not have an uniform in time error bound.
The estimate we obtain, however, gives insight into the nature of the trade-off between the
cut-off frequency M and the artificial viscosity coefficient ε.

Let uNS denote a strong solution of the NSE and uNV denote a solution of NV(ε,p,M)

such that their initial conditions agree, i.e., uNS(0, x) = uNV(0, x). We know that uNS satisfies

∂tuNS − ν�uNS + P (uNS · ∇uNS) = f

whereas uNV satisfies

∂tuNV − ν�uNV + P (uNV · ∇uNV) − εPQM∇ · ((1 + |∇ũNV|p−2)∇ũNV) = f.

Then, w = uNS − uNV satisfies

∂tw − ν�w − εPQM∇ · ((1 + |∇ũNS|p−2)∇ũNS

− (1 + |∇ũNV|p−2)∇ũNV

)+ P (uNS · ∇uNS − uNV · ∇uNV)

= −εPQM∇ · ((1 + |∇ũNS|p−2)∇ũNS

)
.

Testing this equation against w results in

1

2
∂t‖w‖2 + ν‖∇w‖2 + ε(‖∇w̃‖2 + γ ‖∇w̃‖p

p)

≤ ε(‖∇ũNV‖‖∇w̃‖ + ‖∇ũNV‖p−1
p ‖∇w̃‖p) − (w · ∇uNV,w)

≤ cε(‖∇ũNS‖2 + ‖∇ũNS‖p
p)

+ ε

12
(‖∇w̃‖2 + γ ‖∇w̃‖p

p) + |(w · ∇uNV,w)|. (21)

We estimate the high-frequency contribution to the convective term as

(w · ∇ũNV,w) ≤ c ‖∇ũNV‖p(‖w‖2
2p

p−1
+ ‖w̃‖2

2p
p−1

)

≤ ε

12
‖∇w̃‖2 + c ε

− 3
2p−3 ‖∇ũNV‖

2p
2p−3
p ‖w̃‖2 + M

3
2p ‖∇ũNV‖p‖w‖2,

where we have used (A.7), Gagliado-Nirenberg and Young’s inequality. For the low-
frequency contribution, we have

(w · ∇uNV ,w) ≤ M
5
2 ‖uNV‖‖w‖2.

Gathering the above inequalities leads us to

∂t‖w‖2 + ν‖∇w‖2 + ε(‖∇w̃‖2 + γ ‖∇w̃‖p
p)

≤ cε(‖∇ũNS‖2 + ‖∇ũNS‖p
p)

+ C(ε
− 3

2p−3 ‖∇ũNV‖
2p

2p−3
p + M

5
2 ‖uNV‖ + M

3
2p ‖∇ũNV‖p)‖w‖2.
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Letting f (t) = C(ε
− 3

2p−3 ‖∇ũNV‖
2p

2p−3
p + M

5
2 ‖uNV‖ + M

3
2p ‖∇ũNV‖p), we have

∂t (e
−f (t)‖w‖2) + e−f (t)(ν‖∇w‖2 + ε(‖∇w̃‖2 + γ ‖∇w̃‖p

p))

� e−f (t)ε(‖∇ũNS‖2 + ‖∇ũNS‖p
p).

We also have
∫ t

0

(
ε

− 3
2p−3 ‖∇ũNV‖

2p
2p−3
p + M

5
2 ‖uNV‖ + M

3
2p ‖∇ũNV‖p

)
ds

≤ ε
− 5

2p−3 C
4

2p−3
0,f T

2p−5
2p−3 + M

5
2 T C0,f + M

3
2p T ε

− 1
p C

1
p

0,f T ,

where C0,f is a constant depending on the initial data and the external forcing term f only.
It can be seen that by choosing

M(ε) = ε
− 2

2p−3 , (22)

the terms can be balanced to have the same order dependence on ε−1. Therefore, the above

expression is bounded by c(f,u0)max{t, t 2p−5
2p−3 }, where c(f,u0) is a constant that depends

on the initial condition and the forcing function. Thus,

‖(uNS − uNV)(t)‖2

≤ e
ε
− 5

2p−3 c(f,u0)max
{

t,t

2p−5
2p−3

} ∫ t

0
ε(‖∇ũNS‖2 + ‖∇ũNS‖p

p) ds. (23)

We can summarize the above result in the following theorem.

Theorem 4.1 Let uNS denote a strong solution to the three-dimensional NSE such that

uNS ∈ Lp(I ;W 1,p) and let uNV denote a solution to NV(ε,p, ε
− 2

2p−3 ) such that their initial
conditions agree and the forcing function f ∈ L1(I : L2). Then, for t ≤ T , the estimate (23)
holds.

Note that the error estimate depends on the Lp norm in time of the solution. Therefore,
the error rate for the nonlinear viscosity is sensitive to singularities in the solution of the
NSE that may develop in time. This is intuitive since the nonlinear viscosity should, in
principle, regularize such singularities and hence keep the nonlinear viscosity turbulence
model away from the singular NSE solution. We also note that larger p implies smaller
power dependence on ε−1. Thus, for smooth NSE solutions, the stability of larger p implies
that the NV solution stays close to the NSE solution.

Another notable byproduct of the estimate (23) is that the optimization of the estimate
gives us the best value for M . The result is that larger p means we can choose a smaller
cut-off frequency. This is consistent with the fact that when the solution is smooth, we can
apply stabilization to more modes.

4.1.2 Uniform in Time Estimate for p = 5
2

For the special case of p = 5
2 , we can obtain a uniform in time error estimate. The price paid

is that the estimate is no longer uniform in ν. Again, let uNS and uNV denote a solution to
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NSE and to NV , respectively, and let w = uNS − uNV. Then, in (21), by setting p = 5
2 , we can

bound the nonlinear convective term as

|(w · ∇ũNV,w)| ≤ ‖∇ũNV‖ 5
2
‖w‖2

10
3

≤ ‖∇ũNV‖3‖w‖ 4
5 ‖∇w‖ 6

5

≤ ν
−3
2 ‖∇ũNV‖

5
2
5
2
‖w‖2 + ν

12
‖∇w‖2.

Theorem A.7 yields

|(w · ∇uNV,w)| ≤ ‖∇uNV‖3‖w‖2
3 ≤ ‖∇uNV‖3‖w‖‖∇w‖

≤ ν−1M‖∇uNV‖2
2‖w‖2 + ν

12
‖∇w‖2.

It is easy to see that the energy estimate gives

∫ t

0

(
ν−1M‖∇uNV‖2

2 + ν− 3
2 ‖∇ũNV‖ 5

2
5
2

)
ds

≤ ν−2MC2
0,f + ν− 3

2 ε−1C2
0,f (24)

so that

‖w(t)‖2 ≤ e
(ν−2MC2

0,f
+ν

− 3
2 ε−1C2

0,f
)‖w(0)‖2. (25)

Theorem 4.2 Let p = 5
2 and let uNS ∈ Lp(I ;W 1,p) denote a solution of the NSE and

uNV a solution of NV such that their initial conditions agree. Let the forcing function
f ∈ L1(I ;L2). Then, uniform in time estimate (25) holds.

The above theorem states that as long as the solution to the NSE is smooth and its total
fluctuation is bounded in a certain appropriate time-space norm, then the error between the
NSE solution and NV solution is bounded in time. Thus, they will stay within a “tube” of
constant radius about the origin.

4.2 The Hyperviscosity Case

We now bound the norm of the difference between solutions of the three-dimensional NSE
and of HV(ε,α,M) in terms of the difference between the initial data and the regularity of
the solution to the NSE. Let uNS and uHV denote a strong solution of NSE and a solution of
HV(ε,α,M), respectively, such that their initial conditions agree, i.e., uNS(0, x) = uHV(0, x).
The solution uNS satisfies

∂tuNS − ν�uNS + P (uNS · ∇uNS) = f

whereas uHV satisfies

∂tuHV − ν�uHV + P (uHV · ∇uHV) − ε(−�)αũHV = f.

Then, w = uNS − uHV satisfies

∂tw − ν�w − ε(−�)αw̃ + P (uNS · ∇uNS − uHV · ∇uHV) = −ε(−�)αũNS.
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Testing against w, we obtain

1

2
∂t‖w‖2 + ν‖∇w‖2 + ε‖|∇|αw̃‖2

≤ ε‖|∇|αũNS‖‖|∇|αw̃‖ − (w · ∇uNS,w)

≤ c ε‖|∇|αũNS‖2 + ε

12
‖|∇|αw̃‖2 + |(w · ∇uNS,w)|.

The Gagliardo-Nirenberg inequality yields

‖w‖4 ≤ ‖w‖θ‖|∇|αw‖1−θ

for θ = 4α−3
4α

. Then, using (A.7) and (A.8), we obtain

(w · ∇uNS,w) ≤ ‖∇uNS‖‖|∇|αw‖2(1−θ)‖w‖2θ

≤ ε

12
‖|∇|αw‖2 + cε− 1−θ

θ ‖∇uNS‖ 1
θ ‖w‖2

≤ ε

12
‖|∇|αw̃‖2 + (εM2α + ε− 3

4α−3 ‖∇uNS‖ 4α
4α−3 )‖w‖2.

We can also bound this nonlinear convective term using the physical viscosity term as for
regularizing in the same was as in the previous section for the nonlinear viscosity case.
Consequently, we obtain

∂t‖w‖2 + ν‖∇w‖2 + ε‖|∇|αw̃‖2

≤ C1ε‖|∇|αũNS‖2 + C2(εM
2α + ε− 3

4α−3 ‖∇uNS‖ 4α
4α−3 )‖w‖2.

We can again balance the terms so that they can be bounded by a common power of ε−1. To

this end, we choose M ∼ ε
−2

4α−3 . Solving the above equation results in

‖(uNS − uHV)(t)‖2 ≤ eε
− 3

4α−3
∫ t

0 (1+‖∇uNS‖
4α

4α−3 ) ds

∫ t

0
ε‖|∇|αũNS‖2. (26)

In summary, we have the following theorem.

Theorem 4.3 Let uNS denote a strong solution to the three-dimensional NSE such that uNS ∈
L2((0, T );Hα) ∩ L

4α
4α−3 ((0, T );H 1) and uHV denote a solution to HV(ε,α, ε

−2
4α−3 ) such that

their initial conditions agree. Then, for t ≤ T , the estimate (26) holds.

Note that we have reduced the exponential dependence on ε−1 which is significant for

small ε. Also, the balancing of term allowed us to choose the cut-off M ∼ ε
−2

4α−3 which is
smaller than that for the nonlinear viscosity method.

5 Contraction in Phase Space

It is known that for the two-dimensional NSE there is a frequency scale beyond which mole-
cular dissipation becomes dominant and the exponential contraction of the phase space re-
sults; no such result is known to hold for the NSE in three dimensions. In this section,
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for special values of p and α, we show that the NV and HV models in three dimensions
also possess such a characteristic frequency scale if the cut-off frequencies exceed such a
scale. In this section, we will estimate the dimension of this finite-dimensional attractor
for NV and HV models in three dimensions. We assume that the forcing is bounded, i.e.,
f ∈ L∞(I,L2).

5.1 Contraction for the NV model at p = 5
2

We obtain the phase space contraction estimate for the NV model for the case p = 5
2 . This is

essentially done by considering two distinct solutions of the NV problem that differ only in
their high-frequency parts. Because dissipation acts much more strongly on high-frequency
modes, we can show that such solutions converge to each other exponentially fast in time.
This implies that the dynamics of the solutions to NV is mainly concentrated in the low
modes. Note that lowering the dimension of this exponential attractor without appreciably
affecting the large-scale dynamics is exactly the goal of turbulence modeling.

For the NV model, the dimension of the exponential attractor can be obtained for p = 5
2

for the same reason that we were able to obtain a uniform in time bounds in Sect. 4.1.2. We
show that the dimension of the attractor is bounded by ε− 3

2 ν− 1
2 .

We denote the low and high frequency parts of the solution u of the NV model by PMu =
u and QMu = ũ, respectively. Then,

∂t ũ − (ν + ε)�ũ + QMP(u · ∇u) − εQMP∇ · (|∇ũ|p−1∇ũ) = 0. (27)

Assume there exists a function v that solves (27) with v(0) = ũ(0) and forced by the low-
frequency part u, i.e.,

∂tv − (ν + ε)�v + QMP(v · ∇v + u · ∇v + v · ∇u + u · ∇u)

− εQMP∇ · (|∇v|p−1∇v) = 0. (28)

Note that if we apply PM to this equation, then we see that the low-frequency part v of v

satisfies

∂tv − (ν + ε)�v = 0.

Then, since v(0, ·) = 0 we have that v(t, ·) = 0 for all t ≥ 0. Subtracting (28) from (27), we
obtain, for w = ũ − v,

∂tw − (ν + ε)�w + QMP (̃u · ∇ũ − v · ∇v + u · ∇w + w · ∇u)

− εQMP∇ · (|∇ũ|p−1∇ũ − |∇v|p−1∇v) = 0.

Testing this equation with w results in

1

2
∂t‖w‖2 + (ν + ε)‖∇w‖2 + γ ε‖∇w‖p

p + (w · ∇ũ,w) + (w · ∇u,w) ≤ 0.

Due to the fact that w = ũ − v = ũ − ṽ lives in the high-frequency space, we have ‖∇w‖ ≥
M‖w‖ which is used to obtain

(w · ∇ũ,w) ≤ ‖∇ũ‖ 5
2
‖w‖2

10
3

� ‖∇ũ‖ 5
2
‖w‖ 4

5 ‖∇w‖ 6
5
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�
‖w‖2‖∇ũ‖ 5

2
5
2

(ε + ν)
3
2

+ ν + ε

12
‖∇w‖2.

Then,

1

2
∂t‖w‖2 + (ν + ε)‖∇w‖2 ≤ ε + ν

2
‖∇w‖2 +

⎛
⎜⎝

‖∇ũ‖ 5
2
5
2

(ε + ν)
3
2

+ ‖∇u‖2
3

ε + ν

⎞
⎟⎠‖w‖2

and therefore,

∂t‖w‖2 ≤ −
(

(ε + ν)M2 − 2(ε + ν)− 3
2 ‖∇ũ‖ 5

2
5
2
− 2(ε + ν)−1M‖∇u‖2

)
‖w‖2.

Now, let

g(t) = ((ε + ν)M2 − 1

t

∫ t

0

(
2(ε + ν)− 3

2 ‖∇ũ‖ 5
2
5
2
+ 2M(ε + ν)−1‖∇u‖2

)
ds.

Using (24), we know that

t−1
∫ t

0
‖∇ũ‖ 5

2
5
2

≤ ε−1C2
f,ν,0,

where C2
f,ν,0 = ‖u0‖2 + 1

ν
‖f ‖2

L∞([0,∞),L2)
. Therefore,

g(t) ≥ (ν + ε)M2 −
(

2(ε + ν)− 3
2 ε−1C2

f,ν,0 + 2M(ε + ν)−1ν−1C2
f,ν,0

)
.

Using the fact that Cf,ν,0 ∼ ν− 1
2 , we obtain

(ν + ε)M2 − 2(ν + ε)− 3
2 (εν)−1 − 2M(ε + ν)−1ν−2 � g(t).

Thus, we see that for large enough M , there exists a δ > 0 such that g(t) ≥ δ. Then, we have

∂t (e
g(t)t‖w‖2) ≤ 0.

We can summarize the above discussion in the following theorem.

Theorem 5.1 Let u solve NV(ε, 5
2 ,M) and v solve the high-frequency equation (28) for

NV(ε,p,M) with low-frequency forcing by u. Then, for large enough M , there exists a
δ > 0 so that we have the contraction estimate

‖ũ(t) − v(t)‖2(t) ≤ e−tδ‖ũ0 − v0‖2.

5.2 Attractor for HV with α = 3
2

We now consider the hyperviscosity model for α = 3
2 and show that, in this case, we can

obtain a contraction estimate even in three dimension and therefore we can estimate the
dimension of the attractor. The high-frequency part of the solution satisfies

∂t ũ − ν�ũ − ε(−�)αũ + QMP(u · ∇u) = 0. (29)
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Assume there exists a function v that solves this equation with v(0) = ũ(0) and forced by
the low-frequency part u, i.e.,

∂tv − ν�v − ε(−�)αv + QMP(v · ∇v + u · ∇v + v · ∇u + u · ∇u) = 0. (30)

Note that if we apply PM to this equation, we then see that the low-frequency part v of v

satisfies

∂tv − ν�v − ε(−�)αv = 0.

Then, since v(0, ·) = 0 we have that v(t, ·) = 0 for all t ≥ 0. Subtracting (30) from (29), we
obtain, for w = ũ − v,

∂tw − ν�w − ε(−�)αw + QMP (̃u · ∇ũ − v · ∇v + u · ∇w + w · ∇u) = 0.

Testing this equation with w results in

1

2
∂t‖w̃(t)‖2 + ε‖|∇|αw̃‖2 + (w · ∇u,w) = 0.

Note that

‖∇w‖ 6
5−2α

≤ ‖|∇|αw‖2 and ‖w‖ 3
α

� ‖w‖θ
2‖|∇|αw‖1−θ , (31)

where θ = 4α−3
2α

with α ≤ 3
2 . By the Hölder inequality and (31), we obtain

(w · ∇u,w) = −(w · ∇w,u) � ‖u‖6‖w · ∇w‖ 6
5

� ‖u‖6‖w‖ 3
α
‖|∇|αw‖2

≤ ‖u‖6‖w‖θ‖|∇|αw‖2−θ ≤ ε− 2−θ
θ ‖u‖ 2

θ

6 ‖w‖2 + ε‖|∇|αw‖2,

where α
3 + 5−2α

6 = 5
6 . Note that due to the Poincare (forward) inequality and the fact that

w ∈ Ran(QM), we have Mα‖w‖ � ‖|∇|αw‖ which yields

∂t‖w(t)‖2 � −(εM2α − 2‖u‖
4α

4α−3
6 ε− 3

4α−3 )‖w‖2.

Then, to respect the energy dissipation we must set α = 3
2 so that

(
t−1

∫ t

0
‖u‖

4α
4α−3
6

) 4α−3
4α

�
(

t−1
∫ t

0
‖∇u‖2

2

)1/2

.

Thus, we have arrived at the following result.

Theorem 5.2 Let u solve HV(ε, 3
2 ,M) and v solve the high-frequency equation (28) for

HV(ε, 3
2 ,M) with low-frequency forcing by u. Then, for large enough M , there exists a

δ > 0 so that we have the contraction estimate

‖ũ(t) − v(t)‖2(t) ≤ e−tδ‖ũ0 − v0‖2.

Again, note the small dependence of M on the power of ν. We can see from this estimate
that the dimension of the exponential attractor is rather manageable. For more information
about attractors and its finite dimensionality in the setting of hyperviscosity models, see [26].
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6 Stability and Convergence for Semi-Discrete and Fully-Discrete Approximations
for p = 3

In this section, we consider a semi-implicit Euler time-stepping scheme to solve the non-
linear spectral viscosity method for p = 3.8 The method is semi-implicit in the sense that
all terms are treated in an implicit manner, including the eddy viscosity term, except that
nonlinear inertial term is partially lagged.

Assume that f ∈ L2((0, T ) : L2) ∩ L1((0, T ) : L2). Let δt denote the time step, K the
number of time steps, and, for i = 1, . . . ,K , ti = iδt and f (i) = f (ti , ·). Given u0 ∈ W 1,3,
seek u

(i)
δt : {i = 1, . . . ,K} × T

3 → R such that ∇ · u(i)
δt = 0 and, for i = 1, . . . ,K ,

∫ ((
u

(i)
δt − u

(i−1)
δt

) · φ + δt
(
ν∇u

(i)
δt : ∇φ + u

(i−1)
δt · ∇u

(i)
δt · φ))dx

+ δt

∫
ε(1 + |∇ũ

(i)
δt |)∇ũ

(i)
δt : ∇φ̃ dx − δt

∫
f (i) · φ dx = 0. (32)

We refer to this system as NVδt (ε,3,M). Note that the convection velocity is lagged in
the nonlinear term so that we are essentially solving a sequence of Oseen-type equations
with nonlinear dissipation. For the case M = 0, this semi-implicit Euler scheme is analyzed
in [6]. However, their emphasis was on the more challenging case of smaller values of p.

We also discretize in space to obtain a fully-discrete system. To this end, we use the
Galerkin projection of u

(i)
δt much as was done in the previous sections. Let f

(i)
N = PNf (ti).

We solve for u
(i)
δt,N ∈ VN such that for each φ ∈ VN and for i = 1, . . . ,K ,

∫
u

(i)
δt,N · φ dx −

∫
u

(i−1)
δt,N · φ dx + δt

∫
ν∇u

(i)
δt,N : ∇φdx

+ δt

∫ (
u

(i−1)
δt,N · ∇u

(i)
δt,N · φ + ε(1 + |∇ũ

(i)
δt,N |)∇ũ

(i)
δt,N : ∇φ̃

)
dx

− δt

∫
f

(i)
N · φ dx = 0. (33)

We refer to (33) as NVδt,N (ε,3,M).
Our goal is to prove stability and convergence results for the semi-discrete and fully-

discrete systems (32) and (33). The case p = 3 turns out to be especially nice because, for
the equation that is satisfied by ∇u

(i)
δt , the L3 norm of the gradient has exactly the same

dimension as the nonlinear form. We will use this property to derive estimates that allows us
to show convergence, as δt → 0, to the solution of NV(ε,3,M) and show the rate at which
the convergence takes place.

6.1 Existence of Fully-Discrete Approximations

We first show that the finite-dimensional fully-discrete system (33) is solvable.
For each i = 1, . . . ,K , we can define the mapping f(i) : R

N → R

N by setting its com-
ponents f(i)(̂u(i)

δt,N )�, � = 1, . . . ,N , to be the left-hand-side of (33) for each basis function

8Recall that p = 3 is the Smagorinsky case.
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φ� ∈ VN . Then, (33) can be expressed as an algebraic problem, i.e., find u
(i)
δt,N such that

f(i)(̂u(i)
δt,N ) = 0. Setting φ = u

(i)
δt,N in (33), we obtain

fi (̂u
(i)
δt,N ) · û(i)

δt,N ≥ 1

2
‖u(i)

δt,N‖2 + δtν‖∇u
(i)
δt,N‖2 + δtε(‖∇ũ

(i)
δt,N‖2

+ ‖∇ũ
(i)
δt,N‖3

3) − 1

2
‖u(i−1)

δt,N ‖2 − δt‖f (i)
N ‖‖u(i)

δt,N‖

≥ 1

2
(‖u(i)

δt,N‖2 − ‖u(i−1)
δt,N ‖2) − δt‖f (i)

N ‖‖u(i)
δt,N‖.

Recall the following topological fixed-point theorem (or hairy-ball theorem) taken from
[7] and which is a consequence of the Brouwer fixed point theorem.

Lemma 6.1 Assume the continuous function g : R

N → R

N satisfies g(v) · v ≥ 0 if |v| = r

for some r > 0. Then, there exists a point v ∈ B(0, r) such that g(v) = 0.

Proof Using this lemma with r = ‖u(i−1)
δt,N ‖2 +2δt‖f (i)

N ‖‖u(i)
δt,N‖ together with the assumption

that δt be sufficiently small, we can prove, for each i = 1, . . . ,K , the existence of u
(i)
δt,N that

solves (33) and for which

‖u(i)
δt,N‖2 + 2δt

(
ν‖∇u

(i)
δt,N‖2 + ε(‖∇ũ

(i)
δt,N‖2 + ‖∇ũ

(i)
δt,N‖3

3)
)

≤ ‖u(i−1)
δt,N ‖2 + 2δt‖fN‖‖u(i)

δt,N‖. (34)

�

6.2 A Priori Energy Estimate

Having shown the existence of solutions for the finite-dimensional fully-discrete sys-
tem (33), we are now interested in seeing what happens as N → ∞. To this end, we need to
show the existence of a solution of (33) that satisfies a discrete energy dissipation estimate.

Theorem 6.2 Let C0,f = (‖u(0)
N ‖2 + δt

C2
P

ν

∑j

i=1 ‖f (i)
N ‖) 1

2 . Then, there exists a solution u
(i)
δt,N

of (33) that satisfies

‖u(j)

δt,N‖2 + δt

j∑
i=1

(
ν‖∇u

(i)
δt,N‖2 + 2ε(‖∇ũ

(i)
δt,N‖2 + ‖∇ũ

(i)
δt,N‖3

3)
)

≤ C2
0,f . (35)

Proof We apply Cauchy-Schwarz, Poincaré inequality, and sum (34) over i = 1, . . . , j to
obtain

‖u(j)

δt,N‖2 +
j∑

i=1

δt
(
ν‖∇u

(i)
δt,N‖2 + 2ε(‖∇ũ

(i)
δt,N‖2 + ‖∇ũ

(i)
δt,N‖3

3)
)

≤ ‖u(0)
N ‖2 +

j∑
i=1

δt
C2

P

ν
‖f (i)

N ‖2.
�
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6.3 Regularity

In order to show existence of solutions of the semi-discrete system (32) by taking limits as
N → ∞ of solutions of the fully-discrete system (33), we use a compactness method. To be
able to do this, we must show that solutions of (33) possess additional regularity.

6.3.1 Space Regularity

Theorem 6.3 Let Csp = (ε−1 + C−2
P )C2

0,f + C3
0,f M

5
2 ν−1. Then, solutions of (33) satisfy

‖∇u
(i)
δt,N‖2 +

∑
δt (2ε(‖�ũ

(i)
δt,N‖2 + ‖ũ(i)

δt,N‖3
9) + ν‖�u

(i)
δt,N‖2)

� ‖∇u
(0)
N ‖2 + Csp.

Proof In (33), set φ = −�u
(i)
δt,N and use

∫
u

(i−1)
δt,N · ∇u

(i)
δt,N · (−�u

(i)
δt,N )

=
∑
l,k,j

∫
∂lu

(i−1)

δt,N;k∂ku
(i)

δt,N;j ∂lu
(i)

δt,N;j ≤ 2

3
‖∇u

(i)
δt,N‖3

3 + 1

3
‖u(i−1)

δt,N ‖3
3,

where the last subscript in, e.g., u
(1)

δt,N;·, denotes the spatial components of the velocity field,
to obtain

1

2
‖∇u

(i)
δt,N‖2

2 + δt (ν‖�u
(i)
δt,N‖2 + ε(‖�ũ

(i)
δt,N‖2 + I3(̃u

(i)
δt,N )))

≤ 1

2
‖∇u

(i−1)
δt,N ‖2 + δt (‖∇u

(i)
δt,N‖3

3 + ‖∇u
(i−1)
δt,N ‖3

3) + δt‖f (i)
N ‖‖�u

(i)
δt,N‖.

Now we have

‖∇u‖3
3 � M

3
2 ‖∇u‖3

2 � M
5
2 ‖∇u‖2‖u‖.

Therefore, we have

‖∇u
(i)
δt,N‖2

2 + δt
(
ν‖�u

(i)
δt,N‖2 + 2ε

(‖�ũ
(i)
δt,N‖2 + I3(̃u

(i)
δt,N )

))

� ‖∇u
(i−1)
δt,N ‖2 + 2δt

(
2

3
‖∇ũ

(i)
δt,N‖3

3 + 1

3
‖∇ũ

(i−1)
δt,N ‖3

3

)
+ δtM

5
2

(
2

3
‖∇u

(i)
δt,N‖2

+ 1

3
‖∇u

(i−1)
δt,N ‖2

)
max

j
‖u(j)

δt,N‖ + 1

ν
δt‖f (i)

N ‖2.

We now sum over i to obtain

‖∇u
(i)
δt,N‖2 + δt

∑(
ν‖�u

(i)
δt,N‖2 + 2ε

(‖�ũ
(i)
δt,N‖2 + I3(̃u

(i)
δt,N )

))

� ‖∇u
(0)
N ‖2 + 2δt

∑
‖∇ũδt,N‖3

3 + M
5
2 max

j
‖uδt,N (j)‖

∑
‖∇uδt,N‖2

+ 1

ν
δt

∑
‖f (i)

N ‖2.
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Consequently, using Theorem 6.2,

‖∇u
(i)
δt,N‖2 + δt

∑(
ν‖�u

(i)
δt,N‖2 + 2ε(‖�ũ

(i)
δt,N‖2 + ‖ũ(i)

δt,N‖3
9)
)

� ‖∇u
(0)
N ‖2 + ε−1C2

0,f + C3
0,f M

5
2 ν−1 + C−2

P C2
0,f . �

6.3.2 Regularity in Time

To use the compactness method, we also need uδt,N to have some regularity in time. The
following lemma provides such a result.

Lemma 6.4 Let Ctm = (2ε)−1(‖∇uδt,N (0)‖2 + Csp) + T (δt)
1
2 (2ν)−1C5

0,f + M
3
2 C

5
2

0,f ν−1 +
2νC−2

P C2
0,f . Then,

n∑
i

‖u(i)
δt,N − u

(i−1)
δt,N ‖2

2δt
+ ν

2
‖∇uδt,N (n)‖2 + ε

2
‖∇ũδt,N (i)‖2 + ε

3
‖∇ũδt,N (i)‖3

3

� ν

2
‖∇uδt,N (0)‖2 + ε

(
1

2
‖∇ũδt,N (0)‖2 + 1

3
‖∇ũδt,N (0)‖3

3

)
+ Ctm.

Proof Set φ = (u
(i)
δt,N − u

(i−1)
δt,N )/δt in (33). Note that

∫
|∇u|∇u : ∇v ≤ 2

3
‖∇u‖3

3 + 1

3
‖∇v‖3

3

and, by the Hölder, Gagliardo-Nirenberg, and Sobolev inequalities,

∫
∇u|u|2 dx ≤ ‖u‖2

9
4
‖∇u‖9 ≤ 2

3
‖u‖6

9
4
+ 1

3
‖∇u‖3

9 � ‖u‖5‖∇u‖ + ‖∇u‖3
9.

We also have, by Sobolev and Bernstein (see (A.7)) inequalities,

∫
∇u|u|2 dx ≤ ‖u‖2

2‖∇u‖∞ ≤ c2‖u‖2‖∇u‖M 3
2 .

Therefore, we have

1

2δt
‖u(i)

δt,N − u
(i−1)
δt,N ‖2 + ν

2
‖∇u

(i)
δt,N‖2 + ε

2
‖∇ũδt,N (i)‖2 + ε

3
‖∇ũδt,N (i)‖3

3

� ν

2
‖∇u

(i−1)
δt,N ‖2 + ε

2
‖∇ũ

(i−1)
δt,N ‖2 + ε

3
‖∇ũ

(i−1)
δt,N ‖3

3

+ δt
(‖∇ũδt,N (i)‖3

9 + ‖∇u
(i−1)
δt,N ‖‖u(i−1)

δt,N ‖5

+ M
3
2 ‖u(i−1)

δt,N ‖2‖∇u
(i)
δt,N‖ + ‖fi‖2

)
.

If we sum this successively, we obtain

n∑
i

‖u(i)
δt,N − u

(i−1)
δt,N ‖2

2δt
+ ν

2
‖∇uδt,N (n)‖2 + ε

2
‖∇ũδt,N (i)‖2 + ε

3
‖∇ũδt,N (i)‖3

3
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� ν

2
‖∇uδt,N (0)‖2 + ε

2
‖∇ũδt,N (0)‖2 + ε

3
‖∇ũδt,N (0)‖3

3

+ δt
∑

‖∇ũδt,N‖3
9 + max

j
‖uδt,N (j)‖5δt

∑
‖∇u

(i)
δt,N‖

+ M
3
2 δt max

j
‖uδt,N (j)‖2

∑
‖∇u

(i)
δt,N‖ + 2δt

∑
‖f (i)

N ‖2.

We are now left, on the right-hand side, terms that are bounded due to Theorem 6.2. Substi-
tuting the bounds completes the proof. �

6.4 Existence and Convergence of Semi-Discrete Approximations

Having shown the existence of solutions of (33), we now show that some subsequence of
u

(i)
δt,N converges to a solution of (32). We have shown that u

(i)
δt,N ∈ W 1,9 ∩ H 2 for each i. We

construct a subsequence by successively reducing the sequence to a convergent sequence
that converges at each of the time steps up to the current iteration. We start this process at
i = 1. By compactness, there exists u

(1)
δt ∈ W 1,9 ∩ H 2 and a subsequence such that u

(1)
δt,Nk

converges to u
(1)
δt strongly in W 1,3 and weakly in H 2. We now again take the subsequence

of uδt,Nk
to obtain u

(2)
δt such that this subsequence converges to it. This process will continue

for all i = 1, . . . , n. In this way, we can obtain a subsequence uδt,Nl
and a function uδt {i =

1, . . . ,K} × T

3 → R such that for each discrete time steps i = 1, . . . ,K , u
(i)
δt,Nl

converges

to u
(i)
δt strongly in W 1,3 and weakly in H 2. It remains to show that each u

(i)
δt satisfies (32).

This is done in almost exactly the same manner as was done in Sect. 3. Thus we have the
following result.

Theorem 6.5 There exists a unique solution u
(i)
δt , i = 1, . . . ,K , of the semi-discrete problem

NVδt (ε,3,M).

Can we take a sequence of problems NVδt as δt → 0 and conclude that such a sequence
converges to a function that satisfies NV? To do this, we need to clarify a few things. First,
u

(i)
δt is defined on a discrete grid and therefore not suitable when we discuss its convergence

to a function that is defined continuously in time. We must interpolate this sequence between
the discrete time steps to derive a function that is defined on space-time. Secondly, we should
decide on the most convenient way in which δt → 0. To this end, we consider successively
refining the mesh. That is, at the kth step, we take δt = 2−k , so that the mesh at the kth step
is a refinement of the mesh at the (k − 1)st step. Then, to obtain an appropriate function
from the sequence u

(i)
δt so that we can talk about it as a function in time, we interpolate u

(i)
δt ’s

to define:

uδt (t) = t − ti−1

δt
u

(i)
δt + ti − t

δt
u

(i−1)
δt .

Note that, for any norm,

‖uδt (t)‖ ≤ ‖u(i)
δt ‖ + ‖u(i−1)

δt ‖.
This implies, for instance, that

(∫
‖∇uδt‖p

) 1
p

�
(∑

i

‖∇u
(i)
δt ‖pδt

) 1
p

.
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Thus, uδt (t) ∈ L2(I ;H 2) ∩ L3(I ;W 1,9) ∩ L∞(I ;H 1) and
∫

‖∂tuδt (t)‖2 =
∑

(δt)−1‖u(i)
δt − u

(i−1)
δt ‖2.

Thus, due to Lemma 6.4, ∂uδt ∈ L2(I ;L2) and the bound is uniform in k.
By Aubin-Lions compactness theorem, there exists a subsequence that converges to a

function u strongly in L2(I ;W 1,3). This convergence also takes place for almost all time in
I , say, J ⊂ I . Choose a time t ∈ J ∩ {j2−k, j relatively prime to k}, i.e., t is a dyadic time
that belongs to J . Now, note that

∂tuδt (t) = u
(i−1)
δt + u

(i)
δt

δt
,

whenever t ∈ (ti−1, ti]. We see, therefore, that uδt almost satisfies NV at time t , except that
the nonlinearity has dependence on the time ti−1. However, due to the convergence of the
L2 norm of ‖u(i)

δt − u
(i−1)
δt ‖ to zero as δt → 0, the residual term in the nonlinear term goes

to zero. Since uδt (t) satisfies NV with residual of order O(δt), it suffices to show that, at
time t , u also satisfies NV . But we know that strong convergence takes place at t so it can
be shown that u satisfies NV by an analogous manner as was shown in Sect. 3.

Theorem 6.6 Let u
(i)
δt be sequence of solutions to NVδt where δt = 2−k . We define for each

k the interpolant:

uδt=2−k (t) = t − ti−1

δt
u

(i)
δt + ti − t

δt
u

(i−1)
δt .

Then, there exists a subsequence of uδt=2−k that converges to u ∈ L2(I ;H 2)∩L3(I ;W 1,9)∩
L∞(I ;H 1) and that u satisfies NV .

6.5 Stability and Uniqueness

We now show a stability estimate from which uniqueness follows. The following stability
estimate is interesting in that if the power input is finite so that C0,f < ∞ for all time, then
two solutions stay boundedly close to each other.

Theorem 6.7 Let u
(i)

1,δt and u
(i)

2,δt be two solutions to NVδt . Let δt satisfy

4δt (M + ε−1)ν−2Ctm ≤ 1.

Then,

‖u(n)

1,δt − u
(n)

2,δt‖2

� 2(M+ 1
ε )

C2
0,f

ν2 ‖u(0)

1,δt − u
(0)

2,δt‖2 + O(δt · ν)‖∇(u
(0)

1,δt − u
(0)

2,δt )‖2.

In particular, a solution uδt to NVδt is unique.

Proof Let wi = u
(i)

1,δt − u
(i)

2,δt . Then, subtracting the two equations they satisfy and testing
against wi we obtain

1

2
‖wi‖2 + δt (ν‖∇wi‖2 + ε(‖∇w̃i‖2 + γ ‖∇w̃i‖p

p))
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≤ δt |(wi−1 · ∇u1
δt (i),wi)| + 1

2
‖wi−1,N‖2,

where we have used (A.12). Due to the Gagliardo-Nirenberg inequality, we have ‖w‖ 18
5

≤
2

4
3 ‖w‖ 1

3 ‖∇w‖ 2
3 and by the Sobolev imbedding theorem, L

9
4 is continuously imbedded in

L3. Thus,

|(wi−1 · ∇ũ
(i)
δt ,wi)|

≤ ‖∇ũ
(i)
δt ‖ 9

4
‖wi−1‖ 18

5
‖wi‖ 18

5

≤ 2
1
3 ‖∇ũ

(i)
δt ‖ 9

4
(‖wi‖ 2

3 ‖∇wi‖ 4
3 + ‖wi−1‖ 2

3 ‖∇wi−1‖ 4
3 )

� 1

ν2
(‖wi‖2 + ‖wi−1‖2)‖∇ũ

(i)
δt ‖3

9
4
+ ν

4
‖∇wi‖2 + ν

4
‖∇wi−1‖2

� 1

ν2
(‖wi‖2 + ‖wi−1‖2)‖∇ũ

(i)
δt ‖3

3 + ν

4
‖∇wi‖2 + ν

4
‖∇wi−1‖2.

For the low-frequency part, note that, by Gagliardo-Nirenberg inequality,

‖u‖3 ≤ 2‖u‖ 1
2 ‖∇u‖ 1

2 .

Therefore,

|(wi−1 · ∇u
(i)
δt ,wi)|

≤ ‖∇u
(i)
δt ‖3‖wi−1‖3‖wi‖3

≤ 2‖∇u
(i)
δt ‖3(‖wi−1‖‖∇wi−1‖ + ‖wi‖‖∇wi‖)

≤ 3

ν
(‖wi‖2 + ‖wi−1‖2)‖∇u

(i)
δt ‖2

3 + ν

4
‖∇wi‖2 + ν

4
‖∇wi−1‖2

� 1

ν
(‖wi‖2 + ‖wi−1‖2)M‖∇u

(i)
δt ‖2

2 + ν

4
‖∇wi‖2 + ν

4
‖∇wi−1‖2.

Let Ai = ν−1M‖∇u
(i)
δt ‖2 + ν−2‖∇ũ

(i)
δt ‖3

3. By summarizing our calculations, we have that

|(wi−1 · ∇u
(i)

1,δt ,wi)| ≤ Ai‖wi‖2 + Ai‖wi−1‖2 + ν

2
‖∇wi‖2 + ν

2
‖∇wi−1‖2.

Then, Lemma 6.4 yields Ai ≤ (ν−2M + ν−2ε−1)Ctm. Thus, we have

‖wi‖2 + δt (2ε(‖∇w̃i‖2 + γ ‖∇w̃i‖3
3) + ν‖∇wi‖2)

� 2Aiδt‖wi‖2 + (1 + 2Aiδt)‖wi−1‖2 + δtν‖∇wi−1‖2

or

‖wi‖2 + (1 − 2Aiδt)
−1δt

(
2ε(‖∇w̃i‖2 + γ ‖∇w̃i‖3

3) + ν‖∇wi‖2
)

≤ (1 + 2Aiδt)(1 − 2Aiδt)
−1‖wi−1‖2 + (1 − 2Aiδt)

−1δtν‖∇wi−1‖2.
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Since 1 − 2Aiδt ≥ 1
2 by hypothesis, we have, due to Lemma A.18,

‖wj‖2 +
j∑

i=1

(
j∏

l=i+1

αl

)
(1 − 2Aiδt)

−1δt
(
2ε(‖∇w̃i‖2 + γ ‖∇w̃i‖3

3) + ν‖∇wi‖2
)

≤
(

j∏
l=1

αl

)
‖w0‖2 + (1 − 2A1δt)

−1δtν‖∇w0‖2

+
j∑

i=1

(
j∏

l=i+1

αl

)
(1 − 2Aiδt)

−1δtν‖∇wi−1‖2,

where αl = (1+2Alδt)(1−2Alδt)
−1. Note that for δt ·Ai ≤ 1

4 , (1+2δtAi)(1−2δtAi)
−1 ≤

22δtAi . The theorem follows from this observation together with Lemma 6.2. �
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Appendix: Mathematical Background

In the Appendix, we gather a set of mathematical results that are used in our analyses.

A.1 Multiplier Theory, Filter Operators, and Fractional Differentiation and Integration

The analysis of the spectral viscosity equation involves an interaction of a rather broad
range of mathematical concepts. The filter operator is defined in frequency space, while
the nonlinear viscosity involves effects in physical space. Hyperviscosity brings the issue
of fractional differentiation and how it interacts with the filter. In this section, we present
a set of results that can serve as a common framework in which these concepts can be
manipulated. Due to the use of spectral filtering, it is no surprise that the tools from harmonic
analysis are used extensively.

Recall that we defined the operator PN as follows:

PNf =
∑

|k|∞≤N

f̂ (k)eik·x, where f =
∑

f̂ (k)eik·x .

Thus, we can consider PN as an operator that is multiplied by χ|k|∞≤N in frequency space.
An operator that is obtained in this manner is called a multiplier operator. For notational con-
venience, we denote by Tm an operator obtained by the multiplication by the given function
m(k) in frequency space. Therefore,

PN = Tχ|k|∞≤N
.

We are also be interested in how this operator interacts with the fractional differentiation
operator:

|∇|sPN = T|k|sχ|k|∞≤N
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and also how I − PN interacts with the fractional integration operator:

|∇|−s(I − PN) = T|k|−sχ|k|∞>N
,

both with s ≥ 0. These operators become fundamental to the discussion that follows. We
need to be able to manipulate these operators analytically; that is, we need estimates in
various norms. We call a linear operator T that maps a measure space into another of type
(p, q) if ‖T ‖Lp→Lq < ∞. Thus, the goal is to obtain (p, q) estimates for various values of
p and q .

As we see later, the choice of the cube |k|∞ ≤ N as the frequency region to which we
project is important. We could not have chosen |k|2 there for a rather deep reason in har-
monic analysis. We will briefly mention this issue later. We can immediately obtain that
|∇|sPN is an operator of type (2,2). Let d denote the dimension.

Lemma A.1 For s ≥ 0,

‖|∇|sPN‖L2→L2 � Ns

Proof

‖|∇|sPNf ‖2 =
∑

|k|∞≤N

|k|s |f̂ |2 ≤ ds/2Ns‖f̂ ‖2 = ds/2Ns‖f ‖2. �

The (2,2) estimate is not flexible enough for our analysis. We want to obtain (p, q) type
estimates. One convenience for choosing |k|∞ is that the cut-off operator can be expressed
in physical space as a convolution with a Dirichlet kernel:

DN(x) =
∏

l

(
sin((N + 1/2)xl)

sin(xl/2)

)

so that,

PN(f ) = DN ∗ f.

Obtaining a (p, q) estimates for each values of p,q may be tedious. The well-known Riesz-
Thorin interpolation theorem allows us to obtain (p, q) type estimates when (1/p,1/q) is a
convex combination of two end-point types. Thus, we can simplify the task of obtaining an
infinite number of estimates to just two [1]:

Theorem A.2 (Riesz-Thorin) Let T be an operator satisfying

‖T ‖Lp1 →Lq1 < ∞ and ‖T ‖Lp2 →Lq2 < ∞.

Let ( 1
p
, 1

q
) = (1 − θ)( 1

p1
, 1

q1
) + θ( 1

p2
, 1

q2
). Then, we have

‖T ‖Lp→Lq ≤ ‖T ‖1−θ
Lp1 →Lq1 ‖T ‖θ

Lp2 →Lq2 .

We now show that ‖PN‖L1→L∞ and ‖PN‖Lp→Lp can be estimated. The desired estimate
follows by an interpolation. First, the former is easy to prove:

Lemma A.3

‖PNg‖∞ ≤ cNd‖g‖1.
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Proof We simply estimate the maximum norm of the Dirichlet kernel. Note that if 0 ≤ t ≤
π , then, |t |/π ≤ | sin(t/2)| and | sin(t/2)| ≤ min{|t |,1} for all t . Therefore, we have

∣∣∣∣ sin((N + 1/2)t)

sin(t/2)

∣∣∣∣ ≤ min{(N + 1/2)|t |,1}π
t

� N.

By symmetry, this holds for all 0 ≤ t ≤ 2π . Thus, we get ‖DN‖∞ � Nd from which it
follows that

‖DN ∗ g‖∞ ≤ ‖DN‖∞‖g‖1 ≤ cNd‖g‖1.
�

The Lp → Lp bound is more difficult. Actually, since ‖DN‖1 ∼ log(N), we can show
such a bound up to a logarithmic factor by simply using the Young’s inequality. However,
the logarithmic dependence can be eliminated. The trade-off is that we need to use the theory
of singular integral operators and multiplier theory which implies the non-triviality of such
a bound. In fact, it is a result in [8] that, had we chosen to use a cut-off filter with a square
norm:

∑
|k|2≤N û(k), no such bound can exist. However, for the partial sum operator we use,

such a bound is true. The relevant tool to show this has been of historical significance in the
development of harmonic analysis.

The tool to use is to show that the question about the boundedness in Lp 1 < p < ∞
of an operator on a torus can be reduced to the corresponding question on R

d due to the
following transference principle which is proved in [13]:

Theorem A.4 (Transference Principle) Let Tm be an operator associated with a multiplier
m : R

d → C such that m is continuous at each point of Z

d . Then the restriction m = m|Zd

defines a multiplier operator on L2(Td) and

‖Tm‖Lp(Td )→Lp(Td ) ≤ ‖Tm‖Lp(Rd )→Lp(Rd ).

Thus, we can transfer the question about a multiplier operator on a torus to a corre-
sponding question on R

n. The boundedness of the multiplier operator on R

d is answered by
another fundamental theorem in harmonic analysis (see [1]):

Theorem A.5 (Hormander-Mikhlin) Let m : R

d → C satisfy the homogeneous symbol esti-
mates of order 0:

|∇km(ζ )| � |ζ |−k

for all ζ �= 0 and 0 ≤ k ≤ d + 2. Then, ‖Tm‖Lp(Rd )→Lp(Rd ) � cp for all 1 < p < ∞.

We will not give details of the proof, but, using this principle, the boundedness of PN in
Lp follows by noting that it can be expressed as a combination of modulation and a Hilbert
transform. Then, using the Hormander-Mikhlin theorem, the Hilbert transform can be shown
to be bounded in Lp . Then, the following theorem follows by the transference principle [13]:

Theorem A.6 If 1 < p < ∞ we have

‖PN‖Lp→Lp � cp.

The following inequality is called the Bernstein type inequality, or reverse inequality.
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Theorem A.7 Let 1 < p ≤ q < ∞ or 1 < p < q ≤ ∞. Then,

‖PNf ‖q ≤ cpN
d(

q−p
pq )‖f ‖p.

Proof We simply interpolate between Lemma A.3 and Theorem A.6. We select p ≤ r ≤ q

such that 1 < r < ∞ so that then there exists 0 ≤ θ ≤ 1 such that 1
q

= θ
r

and 1
p

= θ
r

+
1 − θ . Thus, noting that ‖PN‖Lr→Lr ≤ c and ‖PN‖L1→L∞ ≤ Nn, the conclusion follows by
Theorem A.2. �

The Bernstein inequality is just the equivalence of a pair of norms in a finite dimensional
vector space with an explicit constant. However, it is also instructive to view this as one
manifestation of the the uncertainty principle which states that if a function is localized
about the origin in frequency space, then it must have a large physical support. But note that
larger the p, the less sensitive the Lp norm becomes to the size of the physical support. Thus,
the Lp norm of the frequency localized functions becomes less sensitive to p as p becomes
larger, which is indeed shown by the dependence on p of the constant in the Bernstein’s
inequality.

We now turn to a host of inequalities that involve fractional derivatives. We define the
fractional differentiation operator using multiplication by |k|s2 in frequency space:

|∇|sf =
∑

|k|s2f̂ eik·x

for each f for which the right-hand-side is in L2. We note in particular that −� = |∇|2.
Note that fractional differentiation behaves in the following manner when composed

with PN . This is also another type of Bernstein inequality.

Theorem A.8 Let s ≥ 0. Then,

‖|∇|sPNf ‖p ≤ Nscp‖f ‖p.

Proof Define

φj (xj ) =
{

1 |xj | ≤ 1

0 |xj | ≥ 2,

and φj ∈ C∞. Let φ = �jφj . Then,

|k|sχ|k|∞≤N = Ns(|k|N−1)sφ(N−1k)χ|k|∞≤N .

Note that due to the dilation symmetry of the Fourier transform,

((|k|N−1)sφ(N−1k))∨(x) = (|k|sφ(k))∨(Nx)Nn.

Thus, it suffices to consider the multiplier |k|sφ(k) which is a symbol of order 0. Hence, by
the Hormander-Mikhlin theorem, it is bounded in Lp . Thus,

‖|∇|sPN‖Lp→Lp = ‖TNs(|k|N−1)sφ(N−1k)PN‖Lp→Lp

≤ Ns‖T|k|sφ(k)‖Lp→Lp‖PN‖Lp→Lp ≤ Nscp,

and the claim follows by the transference principle [13]. �
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An easy consequence of Theorem A.6 is the following inequality which is in a sense a
Jackson-type inequality from approximation theory.

Theorem A.9

‖(I − PN)f ‖p ≤ cp‖f ‖p.

The significance of the last two inequalities can be illustrated with an example. We will
use these results to prove the Gagliardo-Nirenberg inequality. The more general Besov space
version of the inequality is proved in [19].

Lemma A.10 Let λ, μ, p, q , r , and θ satisfy 1 < q,p ≤ r < ∞, 0 < θ < 1, 0 >
r−q

rq
n − λ,

0 ≤ r−p

rp
n + μ, and θ(λ − n

p
+ n

r
) + (1 − θ)(μ − n

q
+ n

r
) = 0. Then,

‖f ‖Lr � |f̂ (0)| + ‖|∇|λf ‖θ
Lq ‖|∇|μ(f − P0f )‖1−θ

Lp .

Proof We introduce the operator P̃2k = P2k+1(I − P2k ). Then,

‖f ‖r ≤ ‖P0f +
∞∑

k=0

P̃2k f ‖ ≤ |f̂ (0)| +
∞∑

k=0

‖P̃2k f ‖r .

Let t > 0 be chosen later. We split the sum into high-frequency and low-frequency parts and
estimate them differently.

First, by using the first condition in our hypothesis, 0 >
r−q

rq
n − λ in the Jackson and

Bernstein inequalities, we have

∑
k≥log t

‖P̃2k f ‖r �
∑

k≥log t

2k(
r−q
rq n−λ)‖|∇|λf ‖q � t

r−q
rq n−λ‖|∇|λf ‖q .

Analogously, for the low-frequency part we use the second condition in our hypothesis,
0 ≤ r−p

rp
n + μ, to get

∑
0≤k<log t

‖P̃2k f ‖r �
∑

0≤k<log t

2k(
r−p
rp n+μ)‖|∇|μ(f − P0f )‖p

� t
r−p
rp n+μ‖|∇|μ(f − P0f )‖p.

Let a = −(
r−q

rq
n − λ) and b = (

r−p

rp
n + μ). Then, we minimize

t−a‖|∇|λf ‖q + tb‖|∇|μf ‖p

with respect to t . In order optimum is obtained for t = (
a‖|∇|λf )‖q

b‖|∇|μ(f −P0f )‖q
)

1
a+b . Substituting t

into the above inequalities yields

‖f ‖r � |f̂ (0)| + ‖|∇|λf ‖
b

a+b
q ‖|∇|μ(f − P0f )‖

a
a+b
p .

We choose θ = b
a+b

so that it satisfies θ(−a) + (1 − θ)b = 0 which is the third condition in
our hypothesis, θ(λ − n

p
+ n

r
) + (1 − θ)(μ − n

q
+ n

r
) = 0. �
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A.2 Nonlinear Monotone Operator

We set p ≥ 2 to be the degree of nonlinearity of our viscosity operator. Also, for conve-
nience, we introduce the number q where p + q = pq . The nonlinear viscosity operator is
defined as follows:

−∇ · (|∇u|p−2∇u) = −∇ · ((∇u : ∇u)(p−2)/2∇u).

The nonlinear viscosity operator is a type of monotone operator. First, we consider some
algebraic inequalities for vectors; see [5].

Lemma A.11 Let p ≥ 2. For all a, b ∈ R

d , there exists γ > 0 independent of a, b such that

(|a|p−2a − |b|p−2b, a − b) ≥ γ |a − b|p

and

(|a|p−2a − |b|p−2b, c) ≤ (p − 1)|c||a − b|||a| + |b||p−2.

From the above inequalities, we have the following:

Lemma A.12

γ ‖∇(u − v)‖p
p ≤ (|∇u|p−2∇u − |∇v|p−2∇v,∇(u − v))

× (|∇u|p−2∇u − |∇v|p−2∇v,∇w)

≤ (p − 1)‖∇w‖p‖∇(u − v)‖p(‖∇u‖2
p + ‖∇v‖2

p)p−2.

Proof

(|∇u|p−2∇u − |∇v|p−2∇v,∇w)

≤ (p − 1)

∫
|∇w||∇(u − v)|(|∇u| + |∇v|)p−2 dx

≤ (p − 1)

(∫
|∇w|p

) 1
p
(∫

|∇(u − v)|p
) 1

p
(∫

||∇u| + |∇v|| (p−2)p
p−2

) p−2
p

. �

Another remarkable property of this monotone operator is that it remains a coercive op-
erator when tested against −�u in the following sense:

Lemma A.13 Let u ∈ C 2. Then,

(∇ · |∇u|p−2∇u,�u) ≥
∑
i,j,k

∫
|∇u|p−2(∂kju

i)2.

Proof Note that we have

(∇ · |∇u|p−2∇u,�u)

= (|∇u|p−2∇u,−∇�u)
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=
∑
i,j,k

∫
|∇u|p−2(∂kju

i)2 +
∫

(p − 2)|∇u|p−4
∑
i,j,k,l

∂klu
m∂lu

m∂kju
i∂ju

i dx

≥
∑
i,j,k

∫
|∇u|p−2(∂kju

i)2 dx.

The last inequality is due to the fact that the sum inside of the integral is non-negative. �

Define

Ip(u) =
∑
i,j,k

∫
|∇u|p−2(∂kju

i)2.

We then have the following embedding result.

Lemma A.14

‖∇u‖3p ≤ Ip(u)1/p

Proof By Sobolev inequality, we have
∫

|∇u|p−2(∂kju
i)2 ≥

∫
|∂ku

i |p−2(∂kju
i)2

=
∫ (

2

p
∂j |∂ku

i | p
2

)2

�
(∫

|∂ku
i | p

2 ·6
) 1

3

. �

A.3 Compactness and Measure Theory Results

The following is a standard measure theory result in [17].

Lemma A.15 Let ui be a Cauchy sequence in L1. Then, there exists u ∈ L1 and a subse-
quence uij such that uij → u almost everywhere.

Given a sequence of functions ui in L1(�), we call this sequence uniformly integrable if
for any ε > 0 there exists δ > 0 such that for any M ⊂ � with |M| < δ, we have | ∫

M
ui dx| <

ε for all i. A nice property of the uniformly integrable sequence of functions is that, if they
converge pointwise, then the integral also converges.

Lemma A.16 Let ui be uniformly integrable and |�| < ∞. Suppose there exists u ∈ L1(�)

such that ui → u almost everywhere. Then,
∫

ui →
∫

u.

We also use the Aubin-Lions compactness theorem [20] extensively:

Theorem A.17 (Aubin-Lions) Let 1 < α,β < ∞. Let X be a Banach space, and let X0, X1

be separable and reflexive Banach spaces. If X0 ⊂⊂ X ⊂ X1, then the set
{
v ∈ Lα(I ;X0); dv

dt
∈ Lβ(I ;X1)

}
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is compactly embedded in Lα(I ;X).

We recall the following discrete Gronwall type inequality.

Lemma A.18 Suppose we have a sequences of real numbers ai , bi , and μi for i = 1, . . . ,K

and ci for i = 0, . . . ,K that satisfy ci + ai ≤ μici−1 + bi for each i = 1, . . . ,K . Then, for
each i = 1, . . . ,K ,

ci +
i∑

j=1

( i∏
�=j+1

μ�

)
aj ≤ c0

( i∏
�=1

μ�

)
+

i∑
j=1

( i∏
�=j+1

μ�

)
bj ,

where it is understood that
∏i

�=i+1 μ� = 1.

Proof We proceed by induction. For i = 1, the assertion follows from the hypothesis. Sup-
posing that the assertion is true for i = 1, . . . , n − 1, we would like to prove it for i = n. We
have

cn +
n∑

j=1

( n∏
�=j+1

μ�

)
aj

= cn + an + μn

n−1∑
j=1

( n−1∏
�=j+1

μ�

)
aj

≤ μn

[
cn−1 +

n−1∑
j=1

( n−1∏
�=j+1

μ�

)
aj

]
+ bn

≤ μn

[
c0

( n−1∏
�=1

μ�

)
+

n−1∑
j=1

( n−1∏
�=j+1

μ�

)
bj

]
+ bn

≤ c0

( n∏
�=1

μl

)
+

n∑
j=1

( n∏
�=j+1

μ�

)
bj .

�
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